A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Immunotherapeutics (CI) Program Bookmark and Share

Cancer Immunotherapeutics Program

Peter P. Lee, M.D., Co-leader
Hua Yu, Ph.D., Co-leader
Program Members -If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.
 
The Cancer Immunotherapeutics (CI) Program is focused on discovery and application to clinical practice of efficacious and minimally toxic immunotherapeutic interventions for cancer. The long-term goal of the CI Program is to develop insights made by tumor immunologists into novel therapeutic approaches in preclinical model systems, which are then taken through rigorous process development to yield therapeutics of sufficient quality for use in human clinical trials.
 
CI has established a robust support team comprising the regulatory, cGMP manufacturing and clinical trials infrastructure to conduct first-in-human clinical exploration under Food and Drug Administration (FDA)-authorized investigational new drugs (INDs). We established the Clinical Immunobiology Correlative Studies Laboratory for the purpose of generating data from treated patients and, using validated assay platforms, informing our translational and basic scientists of clinically relevant immunobiology that impacts therapeutic efficacy and safety.
 
CI has three major components: (i) basic tumor immunology, (ii) antibody-based immunotherapeutics and (iii) cell-based immunotherapeutics. Program research spans understanding basic principles of immunologic escape by tumors, engineering of antibodies and antibody fragments for radioimmunotherapy, imaging and the derivation of immunocytokines, use of viral vectors for tumor vaccines and genetic engineering of T cell s for adoptive immunotherapy.
 
INDs and Clinical Protocols
  • The CI Program's growing portfolio of active FDA INDs covers a variety of genetic engineering products, recombinant antibody proteins and genetically modified cells.
  • FDA-authorized clinical protocols cover a growing number of patient populations, including those with CEA-expressing carcinomas (colorectal and breast), prostate cancer, glioma, lymphoma and childhood neuroblastoma.
  • In the next few years, additional protocols for lung cancer, ovarian cancer, leukemias and pediatric embryonal brain tumors will be added, and multimodality immunotherapy protocols will commence.
 
Program Goals
  • Develop and improve lymphocyte genetic engineering and adoptive T cell transfer-based immunotherapy for oncologic disease
  • Develop molecularly-targeted therapies to overcome tumor-induced immune suppression, thereby enhancing the efficacies of cell- and antibody-based immunotherapeutic modalities
  • Develop novel antibody-based therapeutics for imaging and treatment of both solid tumors and hematopoietic malignancies
 
CI Members' Research
Members of the CI Program have expertise in the specialized areas of cancer immunotherapy and tumor immunology. Of particular interest to this program are the fields of antibody-based radioimmunotherapy, cell- and vaccine-based immunotherapeutics, immunopharmacologic drugs, signaling between tumor and immune cells in the tumor microenvironment, tumor-induced immune suppression, and phase I and II clinical trials. Knowledge gained from these studies is applied toward development of innovative, multimodality cancer therapeutics to enhance immune responses against tumor cells.
 

Immunotherapeutics (CI) Program

Cancer Immunotherapeutics Program

Peter P. Lee, M.D., Co-leader
Hua Yu, Ph.D., Co-leader
Program Members -If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.
 
The Cancer Immunotherapeutics (CI) Program is focused on discovery and application to clinical practice of efficacious and minimally toxic immunotherapeutic interventions for cancer. The long-term goal of the CI Program is to develop insights made by tumor immunologists into novel therapeutic approaches in preclinical model systems, which are then taken through rigorous process development to yield therapeutics of sufficient quality for use in human clinical trials.
 
CI has established a robust support team comprising the regulatory, cGMP manufacturing and clinical trials infrastructure to conduct first-in-human clinical exploration under Food and Drug Administration (FDA)-authorized investigational new drugs (INDs). We established the Clinical Immunobiology Correlative Studies Laboratory for the purpose of generating data from treated patients and, using validated assay platforms, informing our translational and basic scientists of clinically relevant immunobiology that impacts therapeutic efficacy and safety.
 
CI has three major components: (i) basic tumor immunology, (ii) antibody-based immunotherapeutics and (iii) cell-based immunotherapeutics. Program research spans understanding basic principles of immunologic escape by tumors, engineering of antibodies and antibody fragments for radioimmunotherapy, imaging and the derivation of immunocytokines, use of viral vectors for tumor vaccines and genetic engineering of T cell s for adoptive immunotherapy.
 
INDs and Clinical Protocols
  • The CI Program's growing portfolio of active FDA INDs covers a variety of genetic engineering products, recombinant antibody proteins and genetically modified cells.
  • FDA-authorized clinical protocols cover a growing number of patient populations, including those with CEA-expressing carcinomas (colorectal and breast), prostate cancer, glioma, lymphoma and childhood neuroblastoma.
  • In the next few years, additional protocols for lung cancer, ovarian cancer, leukemias and pediatric embryonal brain tumors will be added, and multimodality immunotherapy protocols will commence.
 
Program Goals
  • Develop and improve lymphocyte genetic engineering and adoptive T cell transfer-based immunotherapy for oncologic disease
  • Develop molecularly-targeted therapies to overcome tumor-induced immune suppression, thereby enhancing the efficacies of cell- and antibody-based immunotherapeutic modalities
  • Develop novel antibody-based therapeutics for imaging and treatment of both solid tumors and hematopoietic malignancies
 
CI Members' Research
Members of the CI Program have expertise in the specialized areas of cancer immunotherapy and tumor immunology. Of particular interest to this program are the fields of antibody-based radioimmunotherapy, cell- and vaccine-based immunotherapeutics, immunopharmacologic drugs, signaling between tumor and immune cells in the tumor microenvironment, tumor-induced immune suppression, and phase I and II clinical trials. Knowledge gained from these studies is applied toward development of innovative, multimodality cancer therapeutics to enhance immune responses against tumor cells.
 
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Clinical Trials
Our aggressive pursuit to discover better ways to help patients now – not years from now – places us among the leaders worldwide in the administration of clinical trials.
 
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Discover the wide range of progressive cancer treatment options at City of Hope designed to meet the individual needs of each patient. Here, medical research and clinical care are integrated, speeding the application of scientific discoveries toward better, more effective patient cancer treatments.
City of Hope Breakthroughs
Get the latest in City of Hope's research, treatment and news you can use on our blog, Breakthroughs.
 
 
When you support City of Hope, you help us shorten the time it takes to get from bold, innovative ideas to powerful new medical treatments. Make a gift online now.
NEWS & UPDATES
  • Cancer research has yielded scientific breakthroughs that offer patients more options, more hope for survival and a higher quality of life than ever before. The 14.5 million cancer patients living in the United States are living proof that cancer research saves lives. Now, in addition to the clinic, hospital an...
  • Advances in cancer treatment, built on discoveries made in the laboratory then brought to the bedside, have phenomenally changed the reality of living with a cancer diagnosis. More than any other time in history, people diagnosed with cancer are more likely to survive and to enjoy a high quality of life. Howeve...
  • While health care reform has led to an increase in the number of people signing up for health insurance, many people remain uninsured or are not taking full advantage of the health benefits they now have. Still others are finding that, although their premiums are affordable, they aren’t able to see the do...
  • Kidney cancer rates and thyroid cancer rates in adults have continued to rise year after year. Now a new study has found that incidence rates for these cancers are also increasing in children — particularly in African-American children. The study, published online this month in Pediatrics, examined childhood ca...
  • Thyroid cancer has become one of the fastest-growing cancers in the United States for both men and women. The chance of being diagnosed with the cancer has nearly doubled since 1990. This year an estimated 63,000 people will be diagnosed with thyroid cancer in the United States and nearly 1,900 people will die ...
  • Older teenagers and young adults traditionally face worse outcomes than younger children when diagnosed with brain cancer and other central nervous system tumors. A first-of-its-kind study shows why. A team of researchers from the departments of Population Sciences and Pathology at City of Hope recently examine...
  • Cancer treatment can take a toll on the mouth, even if a patient’s cancer has nothing to do with the head or throat, leading to a dry mouth, or a very sore mouth, and making it difficult to swallow or eat. Here’s some advice from the National Cancer Institute (NCI)  on how to ease cancer-related dis...
  • Radiation oncology is one of the three main specialties involved in the successful treatment of cancer, along with surgical oncology and medical oncology. Experts in this field, known as radiation oncologists, advise patients as to whether radiation therapy will be useful for their cancer – and how it can best ...
  • There’s more to cancer care than simply helping patients survive. There’s more to cancer treatment than simple survival. Constant pain should not be part of conquering cancer,  insists Betty Ferrell, Ph.D., R.N., director of nursing research and education at City of Hope. She wants patients and caregivers...
  • Even its name is daunting. Systemic mastocytosis is a fatal disease of the blood with no known cure. But a new study suggests a bone marrow transplant may be the answer for some patients. While rare, systemic mastocytosis is resistant to treatment with drugs and, when aggressive, can be fatal within four years ...
  • Could what you eat affect the health of your chromosomes? The short answer is, “Yes.” Researchers led by Dustin Schones, Ph.D., assistant professor in the Department of Cancer Biology, and Rama Natarajan, Ph.D., director of the Division of Molecular Diabetes Research and the National Business Products Industry ...
  • September is Prostate Cancer Awareness Month. Here, Bertram Yuh, M.D., assistant clinical professor in the Division of Urology and Urologic Oncology at City of Hope, explains the importance of understanding the risk factors for the disease and ways to reduce those risks, as well as overall prostate health. “Wha...
  • ** Learn more about prostate health, plus prostate cancer research and treatment, at City of Hope. ** Learn more about getting a second opinion at City of Hope by visiting us online or by calling 800-826-HOPE (4673). City of Hope staff will explain what’s required for a consult at City of Hope and help yo...
  • Childhood cancer survival rates have increased dramatically over the past 40 years. More than 80 percent of children with cancer now survive five years or more, which is a tremendous feat. Despite the survival rate increase, cancer continues to be the No. 1 disease killer and second-leading cause of death in ch...
  • Although a stem cell transplant can be a lifesaving procedure for people diagnosed with a blood cancer or blood disorder, the standard transplant may not be appropriate for all patients. This is because the conditioning regimen (the intensive chemotherapy and/or radiation treatments preceding the transplant) is...