A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Singer-Sam, Judith, Ph.D. Laboratory Bookmark and Share

Laboratory of Judith Singer-Sam, Ph.D.

For a growing number of genes, only one of the two chromosomal copies (or alleles) is expressed, a phenomenon termed monoallelic expression. In some cases, there is random selection of the expressed allele; in others parental origin determines which allele is expressed, which is termed imprinting. Disorders with a genetic component in which either random monoallelic expression or imprinting may play a role include schizophrenia, multiple sclerosis, and diabetes.
 
Our goal is to understand the mechanism and extent of imprinting and monoallelic expression, and their possible relevance to inherited disorders, particularly those of the central nervous system. Towards this goal, we are studying a mouse locus corresponding to a human inherited mental retardation disorder known to involve imprinted genes, the Prader-Willi/Angelman Syndrome. We are also developing an assay that would make use of state-of-the-art microarray technology to probe for imprinting and monoallelic expression in the entire genome.
 

Judith Singer-Sam, Ph.D. Research

Monoallelic Expression in the Central Nervous System
Although most genes in a cell are expressed from both the maternal and paternal chromosome, there are exceptions. For example, in women, most X-linked genes are expressed from only one of the two X chromosomes, a phenomenon called X inactivation. In addition, there is a class of autosomal genes, termed imprinted genes, for which parental origin determines which allele is expressed. Finally, there are autosomal genes that appear at first glance to be bi-allelically expressed but actually show random monoallelic expression (sometimes termed allelic exclusion) at the single-cell level. These exceptions, examples of epigenetics, have proven to be of great interest for researchers because they shed light on gene regulation, chromatin structure, development, and the pattern of inheritance of certain genetic disorders.
 
My research program is focused on the potential role of allele-specific expression in development and function of the central nervous system (CNS). What is the evidence that genes likely to play a role in CNS function show such expression? Olfactory receptors, which are expressed in specialized cells of the CNS, show allelic exclusion, as does p120 catenin, which is involved in synapse formation. Intriguing recent work has shown that a number of factors involved in the immune response, including the genes for interleukin-2 and interleukin-4, also show allelic exclusion. Some of these genes are expressed in the CNS, and the possibility arises that other inflammation-sensitive genes in the CNS may show a similar pattern of expression.  Using gene expression profiling, we discovered that, Cdkn1a, coding for the cell cycle regulator p21Waf1/Cip1, is inflammation-sensitive in the CNS as well as other tissues.  While this gene is bi-allelically expressed, we expect to find additional immune response genes that do undergo monoallelic expression.
 
We have also developed an imprinting screen using expression microarrays. As a model system, we analyzed mice with imprinting defects in proximal chromosome 7; part of this region is analogous to human chromosome 15q11-q13, a locus associated with a number of behavioral and cognitive disorders including the well-studied Prader-Willi/Angelman Syndrome (PW/AS). Our analysis revealed the presence of two novel paternally expressed intergenic transcripts at the mouse PW/AS locus, in a region highly enriched in LINE-1 elements; the function of these transcripts is still unknown.  In separate work, we discovered, in collaboration with Dr. Chauncey Bowers (Department of Neurosciences) that the dense LINE-1 elements in this region are organized in a uniquely asymmetric way, perhaps related to imprinting at the locus.
 
Our current work involves the identification and characterization of genes that are subject to random monoallelic expression in the CNS. We have developed a microarray-based assay for genes that are both silenced and active at the same locus as evidenced by a dual DNA methylation pattern.  We further analyze candidate genes using SNP differences in cDNA of clonal neural stem cell lines derived from F1 hybrids of two different strains of mice. We have found a number of “hits” and are currently characterizing those that appear potentially most relevant to disorders of the CNS.
 

Singer-Sam, Judith, Ph.D. Laboratory

Laboratory of Judith Singer-Sam, Ph.D.

For a growing number of genes, only one of the two chromosomal copies (or alleles) is expressed, a phenomenon termed monoallelic expression. In some cases, there is random selection of the expressed allele; in others parental origin determines which allele is expressed, which is termed imprinting. Disorders with a genetic component in which either random monoallelic expression or imprinting may play a role include schizophrenia, multiple sclerosis, and diabetes.
 
Our goal is to understand the mechanism and extent of imprinting and monoallelic expression, and their possible relevance to inherited disorders, particularly those of the central nervous system. Towards this goal, we are studying a mouse locus corresponding to a human inherited mental retardation disorder known to involve imprinted genes, the Prader-Willi/Angelman Syndrome. We are also developing an assay that would make use of state-of-the-art microarray technology to probe for imprinting and monoallelic expression in the entire genome.
 

Research

Judith Singer-Sam, Ph.D. Research

Monoallelic Expression in the Central Nervous System
Although most genes in a cell are expressed from both the maternal and paternal chromosome, there are exceptions. For example, in women, most X-linked genes are expressed from only one of the two X chromosomes, a phenomenon called X inactivation. In addition, there is a class of autosomal genes, termed imprinted genes, for which parental origin determines which allele is expressed. Finally, there are autosomal genes that appear at first glance to be bi-allelically expressed but actually show random monoallelic expression (sometimes termed allelic exclusion) at the single-cell level. These exceptions, examples of epigenetics, have proven to be of great interest for researchers because they shed light on gene regulation, chromatin structure, development, and the pattern of inheritance of certain genetic disorders.
 
My research program is focused on the potential role of allele-specific expression in development and function of the central nervous system (CNS). What is the evidence that genes likely to play a role in CNS function show such expression? Olfactory receptors, which are expressed in specialized cells of the CNS, show allelic exclusion, as does p120 catenin, which is involved in synapse formation. Intriguing recent work has shown that a number of factors involved in the immune response, including the genes for interleukin-2 and interleukin-4, also show allelic exclusion. Some of these genes are expressed in the CNS, and the possibility arises that other inflammation-sensitive genes in the CNS may show a similar pattern of expression.  Using gene expression profiling, we discovered that, Cdkn1a, coding for the cell cycle regulator p21Waf1/Cip1, is inflammation-sensitive in the CNS as well as other tissues.  While this gene is bi-allelically expressed, we expect to find additional immune response genes that do undergo monoallelic expression.
 
We have also developed an imprinting screen using expression microarrays. As a model system, we analyzed mice with imprinting defects in proximal chromosome 7; part of this region is analogous to human chromosome 15q11-q13, a locus associated with a number of behavioral and cognitive disorders including the well-studied Prader-Willi/Angelman Syndrome (PW/AS). Our analysis revealed the presence of two novel paternally expressed intergenic transcripts at the mouse PW/AS locus, in a region highly enriched in LINE-1 elements; the function of these transcripts is still unknown.  In separate work, we discovered, in collaboration with Dr. Chauncey Bowers (Department of Neurosciences) that the dense LINE-1 elements in this region are organized in a uniquely asymmetric way, perhaps related to imprinting at the locus.
 
Our current work involves the identification and characterization of genes that are subject to random monoallelic expression in the CNS. We have developed a microarray-based assay for genes that are both silenced and active at the same locus as evidenced by a dual DNA methylation pattern.  We further analyze candidate genes using SNP differences in cDNA of clonal neural stem cell lines derived from F1 hybrids of two different strains of mice. We have found a number of “hits” and are currently characterizing those that appear potentially most relevant to disorders of the CNS.
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.

Learn more about
City of Hope's institutional distinctions, breakthrough innovations and collaborations.
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • It was 2009 when a City of Hope patient in her 40s learned that the cancer she had been fighting for several years had metastasized to her lungs. Her medical team ran genetic tests on the tumor, but none of the drug therapies available at the time targeted the known mutations in the tumor cells. […]
  • Acute myeloid leukemia (AML) is characterized by a rapidly-developing cancer in the myeloid line of blood cells, which is responsible for producing red blood cells, platelets and several types of white blood cells called granulocytes. Because AML grows rapidly, it can quickly crowd out normal blood cells, leadi...
  • Rachel Divine is a yoga therapist and patient leader for the Sheri & Les Biller Patient and Family Resource Center. She’s also a former City of Hope patient. When someone you know has cancer, even the word “cancer” can make you feel nervous, sleepless, depressed or more. But, as a yoga teacher for 15 ...
  •   Diagnosed with type 1 diabetes when she was 9 years old, Gina Marchini accepted the fact that she would need insulin the rest of her life. Every day, she injected herself with the lifesaving hormone. She also carefully controlled her diet and monitored the rise and fall of her blood glucose with military...
  • The defeat of cancer will require a team effort. Nowhere is this more necessary (or apparent) than in efforts to combat two of the most deadly forms of the disease  – pancreatic cancer and triple-negative breast cancer. It’s the approach City of Hope is taking with its newly launched multidisciplinary teams, br...
  • It’s a reasonable question: Why is the National Cancer Institute funding a study on preventing heart failure? The answer is reasonable as well: Rates of heart failure are drastically high among childhood cancer survivors — 15 times higher than among people the same age who were never treated for cancer. T...
  • Many teenagers take a break from academics during the summer, but not the eight high school students enrolled in the California Institute for Regenerative Medicine (CIRM) Creativity Awards program at City of Hope. They took the opportunity to obtain as much hands-on research experience as possible, learning fro...
  • About one in eight women will develop breast cancer at some point in her life. In fact, breast cancer is the most common cancer in American women, behind skin cancer. Although women can’t change some risk factors, such as genetics and the natural aging process, there are certain things they can do to lower thei...
  • As genetic testing becomes more sophisticated, doctors and their patients are finding that such tests can lead to the discovery of previously unknown cancer risks. In his practice at City of Hope, Thomas Slavin, M.D., an assistant clinical professor in the Division of Clinical Cancer Genetics, sees the full spe...
  • And the winners are … everyone in the San Gabriel Valley. The recipients of City of Hope’s first-ever Healthy Living grants have been announced, and the future is looking healthier already. In selecting San Gabriel Valley organizations to receive the grants, City of Hope’s Community Benefits Advisory Council ch...
  • Barry Leshowitz is a former City of Hope patient and a family advisor for the Sheri & Les Biller Patient and Family Resource Center. It’s been almost seven years since I checked into a local hospital in Phoenix for a hip replacement, only to be informed by the surgeon that he had canceled the surgery....
  • When it comes to science, the best graduate schools don’t just train scientists, they prepare their students for a lifetime of learning, accomplishment and positive impact on society. At City of Hope, the Irell & Manella Graduate School of Biological Sciences goes one step further – by preparing students to...
  • Cancer affects not just the cancer patient, but everyone around him or her, even after treatment is complete. The challenges can include the fear of cancer recurrence, coping with cancer’s economic impact and the struggle to achieve work-life balance post-treatment. Family members and loved ones of cancer patie...
  •   Bladder cancer facts: Bladder cancer is a disease in which malignant (cancer) cells form in the tissues of the bladder. 2015 estimates: 74,000 new cases of bladder cancer diagnosed 16,000 deaths from bladder cancer (about 11,510 in men and 4,490 in women) Risk factors for bladder cancer: Smoking: Smokers...
  • Women with ovarian cancer have questions about the most promising treatment options, revolutionary research avenues, survivorship and, of course, the potential impact on their personal lives. Now, together in one place, are experts who can provide answers. On Saturday, Sept. 12, the 2015 Ovarian Cancer Survivor...