A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
OConnor, Timothy, Ph.D. Laboratory Bookmark and Share

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.

OConnor, Timothy, Ph.D. Laboratory

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Valentine’s Day is synonymous with dinner reservations, red roses, heart-shaped boxes of chocolates and — more often than not — unrealistically high expectations. Managing those expectations is great advice for all couples on Feb. 14 — and is especially important for couples confronting a cancer diagnosis. Focu...
  • With measles, what starts at a theme park in California definitely doesn’t stay at a theme park in California. Since the beginning of the current measles outbreak – traced to an initial exposure at Disneyland or Disney California Adventure during December – more than 100 people have been diagnosed with a diseas...
  • Even the most loving and secure relationship can be rattled by a life-threatening illness. When a woman is diagnosed with breast cancer, research shows one of the most important factors in helping her cope is having a supportive partner. But that partner can struggle with knowing what to say or how to best supp...
  • It’s been more than a century since Nobel Laureate Paul Ehrlich popularized the idea of a “magic bullet” targeting disease. Cancer researchers ever since have remained in hot pursuit of targeted therapies that home in on cancer cells while leaving normal cells unaffected. Linda Malkas, Ph.D., associate chair of...
  • Cancer patients face a daunting journey marked by challenges and uncertainties. For those undergoing bone marrow, or stem cell, transplantation, one complication poses a particular threat — chronic graft-versus-host disease (GVHD). Now, one researcher may have found a better way to control that threat. GVHD res...
  • Michele Dahlstein, a 50-year-old breast cancer survivor from Upland, California, celebrated her last day of chemotherapy on Dec. 30. She shares her story in her own words: I was diagnosed with breast cancer (invasive ductal carcinoma stage 2) on Aug. 11, 2014, after my yearly mammogram at City of Hope’s W...
  • The treatment of urologic cancers, including bladder cancer, is rapidly evolving. Here, urologic oncologic surgeon and kidney stone specialist Donald Hannoun, M.D., an assistant clinical professor in the Division of Urology and Urologic Oncology at City of Hope | Antelope Valley, explains the changes in hi...
  • A woman confronting metastatic breast cancer faces challenges that, at the outset, seem overwhelming. Research tells us these patients are especially vulnerable to anxiety, depression, hopelessness and other sources of distress. At the same time, they are asked to make complicated choices about their medical ca...
  • California health officials are opting to be safe rather than sorry when it comes to e-cigarettes. The increasingly popular devices are a public health threat, according to a California Department of Health report released Jan. 28. The department is seeking statewide regulation of e-cigarettes, saying they  emi...
  • “Not beyond us.” On World Cancer Day, researchers and caregivers around the globe are embracing this refrain. Specifically, the day calls for action to support healthier lifestyles, early cancer detection, quality of life and access to care. In a time of impressive scientific discovery and narrowing...
  • With more advanced cancer treatments and therapies saving lives every day, it’s safe to say cancer is “Not beyond us,” the official tagline for this year’s World Cancer Day. This year’s World Cancer Day observance takes place on Wednesday, Feb. 4, and focuses on cancer prevention, detection an...
  • Does our environment increase our risk of cancer? What about plastic bottles, radiation, chemicals, soy products …? Do they cause cancer? With so many cancer fears, rumors and downright urban legends circulating among our friends and colleagues, not to mention in the media and blogosphere, why not ask the...
  • With this week’s World Cancer Day challenging us to think about cancer on a global scale, we should also keep in mind that daily choices affect cancer risk on an individual scale. Simply put, lifestyle changes and everyday actions can reduce your cancer risk and perhaps prevent some cancers. According to ...
  • If you haven’t heard the term “precision medicine,” you will. If you don’t have an opinion about access to it, you will. On Friday, President Barack Obama unveiled details of the Precision Medicine Initiative, an effort intended to accelerate cancer research in a powerful way, giving doctors new knowledge and n...
  • The lack of a practical way to produce and store enough stem cells for larger-scale therapies and clinical trials is creating a bottleneck in stem cell research. A new grant to City of Hope from the California Institute for Regenerative Medicine (CIRM) will help solve that problem. The $899,728 grant, awarded T...