A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
OConnor, Timothy, Ph.D. Laboratory Bookmark and Share

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.

OConnor, Timothy, Ph.D. Laboratory

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
NEWS & UPDATES
  • Thyroid cancer has become one of the fastest-growing cancers in the United States for both men and women. The chance of being diagnosed with the cancer has nearly doubled since 1990. This year an estimated 63,000 people will be diagnosed with thyroid cancer in the United States and nearly 1,900 people will die ...
  • Older teenagers and young adults traditionally face worse outcomes than younger children when diagnosed with brain cancer and other central nervous system tumors. A first-of-its-kind study shows why. A team of researchers from the departments of Population Sciences and Pathology at City of Hope recently examine...
  • Cancer treatment can take a toll on the mouth, even if a patient’s cancer has nothing to do with the head or throat, leading to a dry mouth, or a very sore mouth, and making it difficult to swallow or eat. Here’s some advice from the National Cancer Institute (NCI)  on how to ease cancer-related dis...
  • Radiation oncology is one of the three main specialties involved in the successful treatment of cancer, along with surgical oncology and medical oncology. Experts in this field, known as radiation oncologists, advise patients as to whether radiation therapy will be useful for their cancer – and how it can best ...
  • There’s more to cancer care than simply helping patients survive. There’s more to cancer treatment than simple survival. Constant pain should not be part of conquering cancer,  insists Betty Ferrell, Ph.D., R.N., director of nursing research and education at City of Hope. She wants patients and caregivers...
  • Even its name is daunting. Systemic mastocytosis is a fatal disease of the blood with no known cure. But a new study suggests a bone marrow transplant may be the answer for some patients. While rare, systemic mastocytosis is resistant to treatment with drugs and, when aggressive, can be fatal within four years ...
  • Could what you eat affect the health of your chromosomes? The short answer is, “Yes.” Researchers led by Dustin Schones, Ph.D., assistant professor in the Department of Cancer Biology, and Rama Natarajan, Ph.D., director of the Division of Molecular Diabetes Research and the National Business Products Industry ...
  • September is Prostate Cancer Awareness Month. Here, Bertram Yuh, M.D., assistant clinical professor in the Division of Urology and Urologic Oncology at City of Hope, explains the importance of understanding the risk factors for the disease and ways to reduce those risks, as well as overall prostate health. “Wha...
  • ** Learn more about prostate health, plus prostate cancer research and treatment, at City of Hope. ** Learn more about getting a second opinion at City of Hope by visiting us online or by calling 800-826-HOPE (4673). City of Hope staff will explain what’s required for a consult at City of Hope and help yo...
  • Childhood cancer survival rates have increased dramatically over the past 40 years. More than 80 percent of children with cancer now survive five years or more, which is a tremendous feat. Despite the survival rate increase, cancer continues to be the No. 1 disease killer and second-leading cause of death in ch...
  • Although a stem cell transplant can be a lifesaving procedure for people diagnosed with a blood cancer or blood disorder, the standard transplant may not be appropriate for all patients. This is because the conditioning regimen (the intensive chemotherapy and/or radiation treatments preceding the transplant) is...
  • Brain tumor removal would seem to be the obvious course of action in the wake of a brain tumor diagnosis, but that’s not always the case. Some tumors are too difficult for many surgeons to reach or too close to areas that control vital functions. Removing them just proves too risky. A new device being con...
  • Hijacking the same sorts of viruses that cause HIV and using them to reprogram immune cells to fight cancer sounds like stuff of the future. Some scientists believe that the future is closer than we think – and are now studying the approach in clinical trials at City of Hope. Immunotherapy is a promising approa...
  • Jennifer Linehan, M.D., an assistant clinical professor in City of Hope’s Division of Urology and Urologic Oncology in Antelope Valley, thought she knew all there was to know about treating prostate cancer. Then her father was diagnosed with the disease. This is her story. ** My father is 69 years old, has no h...
  • Nausea is the one of the most well-known, and dreaded, side effects of cancer treatment — and with good reason. Beyond the quality-of-life issues that it causes, severe nausea can prevent patients from receiving enough nutrients and calories at a time when they need every edge they can get. A few simple actions...