A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
OConnor, Timothy, Ph.D. Laboratory Bookmark and Share

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.

OConnor, Timothy, Ph.D. Laboratory

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.

Learn more about
City of Hope's institutional distinctions, breakthrough innovations and collaborations.
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • It was 2009 when a City of Hope patient in her 40s learned that the cancer she had been fighting for several years had metastasized to her lungs. Her medical team ran genetic tests on the tumor, but none of the drug therapies available at the time targeted the known mutations in the tumor cells. […]
  • Acute myeloid leukemia (AML) is characterized by a rapidly-developing cancer in the myeloid line of blood cells, which is responsible for producing red blood cells, platelets and several types of white blood cells called granulocytes. Because AML grows rapidly, it can quickly crowd out normal blood cells, leadi...
  • Rachel Divine is a yoga therapist and patient leader for the Sheri & Les Biller Patient and Family Resource Center. She’s also a former City of Hope patient. When someone you know has cancer, even the word “cancer” can make you feel nervous, sleepless, depressed or more. But, as a yoga teacher for 15 ...
  •   Diagnosed with type 1 diabetes when she was 9 years old, Gina Marchini accepted the fact that she would need insulin the rest of her life. Every day, she injected herself with the lifesaving hormone. She also carefully controlled her diet and monitored the rise and fall of her blood glucose with military...
  • The defeat of cancer will require a team effort. Nowhere is this more necessary (or apparent) than in efforts to combat two of the most deadly forms of the disease  – pancreatic cancer and triple-negative breast cancer. It’s the approach City of Hope is taking with its newly launched multidisciplinary teams, br...
  • It’s a reasonable question: Why is the National Cancer Institute funding a study on preventing heart failure? The answer is reasonable as well: Rates of heart failure are drastically high among childhood cancer survivors — 15 times higher than among people the same age who were never treated for cancer. T...
  • Many teenagers take a break from academics during the summer, but not the eight high school students enrolled in the California Institute for Regenerative Medicine (CIRM) Creativity Awards program at City of Hope. They took the opportunity to obtain as much hands-on research experience as possible, learning fro...
  • About one in eight women will develop breast cancer at some point in her life. In fact, breast cancer is the most common cancer in American women, behind skin cancer. Although women can’t change some risk factors, such as genetics and the natural aging process, there are certain things they can do to lower thei...
  • As genetic testing becomes more sophisticated, doctors and their patients are finding that such tests can lead to the discovery of previously unknown cancer risks. In his practice at City of Hope, Thomas Slavin, M.D., an assistant clinical professor in the Division of Clinical Cancer Genetics, sees the full spe...
  • And the winners are … everyone in the San Gabriel Valley. The recipients of City of Hope’s first-ever Healthy Living grants have been announced, and the future is looking healthier already. In selecting San Gabriel Valley organizations to receive the grants, City of Hope’s Community Benefits Advisory Council ch...
  • Barry Leshowitz is a former City of Hope patient and a family advisor for the Sheri & Les Biller Patient and Family Resource Center. It’s been almost seven years since I checked into a local hospital in Phoenix for a hip replacement, only to be informed by the surgeon that he had canceled the surgery....
  • When it comes to science, the best graduate schools don’t just train scientists, they prepare their students for a lifetime of learning, accomplishment and positive impact on society. At City of Hope, the Irell & Manella Graduate School of Biological Sciences goes one step further – by preparing students to...
  • Cancer affects not just the cancer patient, but everyone around him or her, even after treatment is complete. The challenges can include the fear of cancer recurrence, coping with cancer’s economic impact and the struggle to achieve work-life balance post-treatment. Family members and loved ones of cancer patie...
  •   Bladder cancer facts: Bladder cancer is a disease in which malignant (cancer) cells form in the tissues of the bladder. 2015 estimates: 74,000 new cases of bladder cancer diagnosed 16,000 deaths from bladder cancer (about 11,510 in men and 4,490 in women) Risk factors for bladder cancer: Smoking: Smokers...
  • Women with ovarian cancer have questions about the most promising treatment options, revolutionary research avenues, survivorship and, of course, the potential impact on their personal lives. Now, together in one place, are experts who can provide answers. On Saturday, Sept. 12, the 2015 Ovarian Cancer Survivor...