A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
OConnor, Timothy, Ph.D. Laboratory Bookmark and Share

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.

OConnor, Timothy, Ph.D. Laboratory

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
NEWS & UPDATES
  • Brain tumors are exceptionally difficult to treat. They can be removed surgically, but individual cancer cells may have already spread elsewhere in the brain and can escape the effects of both radiation and chemotherapy. To prevent tumors from recurring, doctors need a way to find and stop those invasive cancer...
  • Breast cancer risk is personal; breast cancer risk assessment should be, too. To that end, City of Hope researchers have developed a starting point to help women (and their doctors) with a family history of the disease begin that risk assessment process. The result is an iPhone app, called BRISK, for Breast Can...
  • When it comes to breast cancer, women aren’t limited to getting screened and, if diagnosed, making appropriate treatment choices. They can also take a proactive stance in the fight against breast cancer by understanding key risk factors and practicing lifestyle habits that can help reduce their own breast...
  • Cancers of the blood and immune system are considered to be among the most difficult-to-treat cancers. A world leader in the treatment of blood cancers, City of Hope is now launching an institute specifically focused on treating people with lymphoma, leukemia and myeloma, as well as other serious blood and bone...
  • Genetics, genes, genome, genetic risk … Such terms are becoming increasingly familiar to even nonresearchers as studies and information about the human make-up become more extensive and more critical. At City of Hope, these words have long been part of our vocabulary. Researchers and physicians are studyi...
  • Mammograms are currently the best method to detect breast cancer early, when it’s easier to treat and before it’s big enough to feel or cause symptoms. But recent mammogram screening guidelines may have left some women confused about when to undergo annual testing. Here Lusi Tumyan, M.D., chief of t...
  • Although chemotherapy can be effective in treating cancer, it can also exact a heavy toll on a patient’s health. One impressive alternative researchers have found is in the form of a vaccine. A type of immunotherapy, one part of the vaccine primes the body to react strongly against a tumor; the second part dire...
  • The breast cancer statistic is attention-getting: One in eight women will be diagnosed with breast cancer during her lifetime. That doesn’t mean that, if you’re one of eight women at a dinner table, one of you is fated to have breast cancer (read more on that breast cancer statistic), but it does mean that the ...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free. In his first post, ...
  • Advanced age tops the list among breast cancer risk factor for women. Not far behind is family history and genetics. Two City of Hope researchers delving deep into these issues recently received important grants to advance their studies. Arti Hurria, M.D., director of the Cancer and Aging Research Program, and ...
  • City of Hope is extending the reach of its lifesaving mission well beyond U.S. borders. To that end, three distinguished City of Hope leaders visited China earlier this year to lay the foundation for the institution’s new International Medicine Program. The program is part of City of Hope’s strategi...
  • A hallmark of cancer is that it doesn’t always limit itself to a primary location. It spreads. Breast cancer and lung cancer in particular are prone to spread, or metastasize, to the brain. Often the brain metastasis isn’t discovered until years after the initial diagnosis, just when patients were beginning to ...
  • Blueberries, cinnamon, baikal scullcap, grape seed extract (and grape skin extract), mushrooms, barberry, pomegranates … all contain compounds with the potential to treat, or prevent, cancer. Scientists at City of Hope have found tantalizing evidence of this potential and are determined to explore it to t...
  • Most women who are treated for breast cancer with a mastectomy do not choose to undergo reconstructive surgery. The reasons for this, according to a recent JAMA Surgery study, vary. Nearly half say they do not want any additional surgery, while nearly 34 percent say breast cancer reconstruction simply isn’t imp...
  • The leading risk factor for breast cancer is simply being a woman. The second top risk factor is getting older. Obviously, these two factors cannot be controlled, which is why all women should be aware of their risk and how to minimize those risks. Many risk factors can be mitigated, and simple changes can lead...