A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
OConnor, Timothy, Ph.D. Laboratory Bookmark and Share

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.

OConnor, Timothy, Ph.D. Laboratory

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • The body’s immune system is usually adept at attacking outside invaders such as bacteria and viruses. But because cancer originates from the body’s own cells, the immune system can fail to see it as foreign. As a result, the body’s most powerful ally can remain largely idle against cancer as the disease progres...
  • On Jan. 1, 2015, five City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Her...
  • Are you thinking about switching from traditional cigarettes to e-cigarettes for the Great American Smokeout? Are you thinking that might be a better option than the traditional quit-smoking route? Think again. For lung expert Brian Tiep, M.D., the dislike and distrust he feels for e-cigs comes down to this: Th...
  • Hematologist Robert Chen, M.D., is boosting scientific discovery at City of Hope and, by extension, across the nation. Just ask the National Cancer Institute. The institution recently awarded Chen the much-sought-after Clinical Investigator Team Leadership Award for boosting scientific discovery at City of Hope...
  • Great strides have been made in treating cancer – including lung cancer – but by the time people show symptoms of the disease, the cancer has usually advanced. That’s because, at early stages, lung cancer has no symptoms. Only recently has lung cancer screening become an option. (Read more about the risks...
  • Identifying cures for currently incurable diseases and providing patients with safe, fast and potentially lifesaving treatments is the focus of City of Hope’s new Alpha Clinic for Cell Therapy and Innovation (ACT-I). The clinic is funded by an $8 million, five-year grant from the California Institute for Regene...
  • Cancer is a couple’s disease. It affects not just the person diagnosed, but his or her partner as well. It also affects the ability of both people to communicate effectively. The Couples Coping with Cancer Together program at City of Hope teaches couples how to communicate and solve problems as a unit. He...
  • Chemotherapy drugs work by either killing cancer cells or by stopping them from multiplying, that is, dividing. Some of the more powerful drugs used to treat cancer do their job by interfering with the cancer cells’ DNA and RNA growth, preventing them from copying themselves and dividing. Such drugs, however, l...
  • During October, everything seems to turn pink – clothing, the NFL logo, tape dispensers, boxing gloves, blenders, soup cans, you name it – in order to raise awareness for what many believe is the most dangerous cancer that affects women: breast cancer. But, in addition to thinking pink, women should...
  • In February 2003, when she was only 16 months old, Maya Gallardo was diagnosed with acute myelogenous leukemia (AML) and, to make matters much worse, pneumonia. The pneumonia complicated what was already destined to be grueling treatment regimen. To assess the extent of her illness, Maya had to endure a spinal ...
  • Former smokers age 55 to 74 who rely on Medicare for health care services have just received a long-hoped-for announcement. Under a proposed decision from the Centers for Medicare and Medicaid Services, they’ll now have access to lung cancer screening with a low-dose CT scan. The proposed decision, announ...
  • City of Hope has a longstanding commitment to combating diabetes, a leading national and global health threat. Already, it’s scored some successes, from research that led to the development of synthetic human insulin – still used by millions of patients – to potentially lifesaving islet cell transplants. Diabet...
  • Dee Hunt never smoked. Neither did her five sisters and brothers. They didn’t have exposure to radon or asbestos, either. That didn’t prevent every one of them from being diagnosed with lung cancer. Their parents were smokers, but they’d all left home more than 30 years before any of them were diagn...
  • They may not talk about it, but women with cancers in the pelvic region, such as cervical cancer, bladder cancer and uterine cancer, often have problems controlling their urine, bowel or flatus. Although they may feel isolated, they’re far from alone. Many other women have such problems, too. In fact, nea...
  • Cancer that spreads to the liver poses a significant threat to patients, and a great challenge to surgeons. The organ’s anatomical complexity and its maze of blood vessels make removal of tumors difficult, even for specialized liver cancer surgeons. Following chemotherapy, the livers of cancer patients are not ...