A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Natarajan, Rama, Ph.D, F.A.H.A, F.A.S.N. Research Bookmark and Share

Rama Natarajan, Ph.D, F.A.H.A, F.A.S.N. Research

The major focus of our research is to determine the cellular and molecular mechanisms that play key roles in the development of diabetic vascular complications. We use genomic, transcriptomic and epigenomic approaches in cell culture, animal and clinical models to examine our hypothesis that accelerated vascular complications result from enhanced vascular and renal cell growth, and also monocyte activation due to altered expression of inflammatory cytokines, chemokines and lipids under diabetic conditions.
 
We are actively evaluating molecular mechanisms involved in the expression of pathological genes under diabetic conditions and in promoting metabolic memory. We have demonstrated the role of specific chromatin histone posttranslational modifications in the epigenetic regulation of inflammatory genes. We use epigenomic profiling approaches to map histone modifications, DNA methylation and binding of chromatin factors at diabetes-regulated genes with techniques such as Chromatin immunoprecipitation (ChIP) assays, ChIP-linked to microarrays, and ChIP-Sequencing. We have uncovered key epigenetic alterations under diabetic conditions in vitro, in vivo in diabetic mice, and in cells from diabetic patients, and shown relevance to the phenomenon of metabolic memory.
 
Another active area is the evaluation of specific microRNAs in regulating the expression of inflammatory and fibrotic genes under diabetic conditions. We are examining various mechanisms of microRNA regulation, performing expression profiling using RNA-sequencing, and studying how key microRNAs co-operate with each other in a circuit to amplify the effects of growth factors under diabetic conditions. To test the functional significance in the kidney, we are generating microRNA knockout mice and also evaluating novel modified inhibitors of specific microRNAs (antagomirs) on the progression of diabetic kidney disease in mouse models.
 

Rama Natarajan, Ph.D., Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rama Natarajan, Ph.D., F.A.H.A, F.A.S.N.
National Office Products Endowed Professor
626-256-HOPE (4673), ext. 62289
 
Marpadga A. Reddy, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63671
 
Feng Miao, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 65575
 
Mitsuo Kato, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63996
 
Kirti Bhatt, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65811
 
Nancy Castro, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 64690
 
Ye Jia, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62289
 
Amy Leung, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62278
 
Jung-tak Park, M.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 64809
 
Hang Yuan, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65817
 
Supriya Deschpande
Graduate Student
626-256-HOPE (4673), ext. 65835
 
Wen Jin
Graduate Student
626-256-HOPE (4673), ext. 65823
 
Linda Lanting, B.S.
Research Associate
626-256-HOPE (4673), ext. 64692
 
Mei Wang, M.S.
Research Associate
626-256-HOPE (4673), ext. 64676
 
Lingxiao Zhang, M.S.
Research Associate
626-256-HOPE (4673), ext. 65571
 
Nancy (Zhuo) Chen
Bioinformatics Specialist
656-256-HOPE (4673), ext. 65058
 

Natarajan, Rama, Ph.D, F.A.H.A, F.A.S.N. Research

Rama Natarajan, Ph.D, F.A.H.A, F.A.S.N. Research

The major focus of our research is to determine the cellular and molecular mechanisms that play key roles in the development of diabetic vascular complications. We use genomic, transcriptomic and epigenomic approaches in cell culture, animal and clinical models to examine our hypothesis that accelerated vascular complications result from enhanced vascular and renal cell growth, and also monocyte activation due to altered expression of inflammatory cytokines, chemokines and lipids under diabetic conditions.
 
We are actively evaluating molecular mechanisms involved in the expression of pathological genes under diabetic conditions and in promoting metabolic memory. We have demonstrated the role of specific chromatin histone posttranslational modifications in the epigenetic regulation of inflammatory genes. We use epigenomic profiling approaches to map histone modifications, DNA methylation and binding of chromatin factors at diabetes-regulated genes with techniques such as Chromatin immunoprecipitation (ChIP) assays, ChIP-linked to microarrays, and ChIP-Sequencing. We have uncovered key epigenetic alterations under diabetic conditions in vitro, in vivo in diabetic mice, and in cells from diabetic patients, and shown relevance to the phenomenon of metabolic memory.
 
Another active area is the evaluation of specific microRNAs in regulating the expression of inflammatory and fibrotic genes under diabetic conditions. We are examining various mechanisms of microRNA regulation, performing expression profiling using RNA-sequencing, and studying how key microRNAs co-operate with each other in a circuit to amplify the effects of growth factors under diabetic conditions. To test the functional significance in the kidney, we are generating microRNA knockout mice and also evaluating novel modified inhibitors of specific microRNAs (antagomirs) on the progression of diabetic kidney disease in mouse models.
 

Lab Members

Rama Natarajan, Ph.D., Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rama Natarajan, Ph.D., F.A.H.A, F.A.S.N.
National Office Products Endowed Professor
626-256-HOPE (4673), ext. 62289
 
Marpadga A. Reddy, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63671
 
Feng Miao, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 65575
 
Mitsuo Kato, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63996
 
Kirti Bhatt, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65811
 
Nancy Castro, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 64690
 
Ye Jia, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62289
 
Amy Leung, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62278
 
Jung-tak Park, M.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 64809
 
Hang Yuan, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65817
 
Supriya Deschpande
Graduate Student
626-256-HOPE (4673), ext. 65835
 
Wen Jin
Graduate Student
626-256-HOPE (4673), ext. 65823
 
Linda Lanting, B.S.
Research Associate
626-256-HOPE (4673), ext. 64692
 
Mei Wang, M.S.
Research Associate
626-256-HOPE (4673), ext. 64676
 
Lingxiao Zhang, M.S.
Research Associate
626-256-HOPE (4673), ext. 65571
 
Nancy (Zhuo) Chen
Bioinformatics Specialist
656-256-HOPE (4673), ext. 65058
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • The body’s immune system is usually adept at attacking outside invaders such as bacteria and viruses. But because cancer originates from the body’s own cells, the immune system can fail to see it as foreign. As a result, the body’s most powerful ally can remain largely idle against cancer as the disease progres...
  • On Jan. 1, 2015, five City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Her...
  • Are you thinking about switching from traditional cigarettes to e-cigarettes for the Great American Smokeout? Are you thinking that might be a better option than the traditional quit-smoking route? Think again. For lung expert Brian Tiep, M.D., the dislike and distrust he feels for e-cigs comes down to this: Th...
  • Hematologist Robert Chen, M.D., is boosting scientific discovery at City of Hope and, by extension, across the nation. Just ask the National Cancer Institute. The institution recently awarded Chen the much-sought-after Clinical Investigator Team Leadership Award for boosting scientific discovery at City of Hope...
  • Great strides have been made in treating cancer – including lung cancer – but by the time people show symptoms of the disease, the cancer has usually advanced. That’s because, at early stages, lung cancer has no symptoms. Only recently has lung cancer screening become an option. (Read more about the risks...
  • Identifying cures for currently incurable diseases and providing patients with safe, fast and potentially lifesaving treatments is the focus of City of Hope’s new Alpha Clinic for Cell Therapy and Innovation (ACT-I). The clinic is funded by an $8 million, five-year grant from the California Institute for Regene...
  • Cancer is a couple’s disease. It affects not just the person diagnosed, but his or her partner as well. It also affects the ability of both people to communicate effectively. The Couples Coping with Cancer Together program at City of Hope teaches couples how to communicate and solve problems as a unit. He...
  • Chemotherapy drugs work by either killing cancer cells or by stopping them from multiplying, that is, dividing. Some of the more powerful drugs used to treat cancer do their job by interfering with the cancer cells’ DNA and RNA growth, preventing them from copying themselves and dividing. Such drugs, however, l...
  • During October, everything seems to turn pink – clothing, the NFL logo, tape dispensers, boxing gloves, blenders, soup cans, you name it – in order to raise awareness for what many believe is the most dangerous cancer that affects women: breast cancer. But, in addition to thinking pink, women should...
  • In February 2003, when she was only 16 months old, Maya Gallardo was diagnosed with acute myelogenous leukemia (AML) and, to make matters much worse, pneumonia. The pneumonia complicated what was already destined to be grueling treatment regimen. To assess the extent of her illness, Maya had to endure a spinal ...
  • Former smokers age 55 to 74 who rely on Medicare for health care services have just received a long-hoped-for announcement. Under a proposed decision from the Centers for Medicare and Medicaid Services, they’ll now have access to lung cancer screening with a low-dose CT scan. The proposed decision, announ...
  • City of Hope has a longstanding commitment to combating diabetes, a leading national and global health threat. Already, it’s scored some successes, from research that led to the development of synthetic human insulin – still used by millions of patients – to potentially lifesaving islet cell transplants. Diabet...
  • Dee Hunt never smoked. Neither did her five sisters and brothers. They didn’t have exposure to radon or asbestos, either. That didn’t prevent every one of them from being diagnosed with lung cancer. Their parents were smokers, but they’d all left home more than 30 years before any of them were diagn...
  • They may not talk about it, but women with cancers in the pelvic region, such as cervical cancer, bladder cancer and uterine cancer, often have problems controlling their urine, bowel or flatus. Although they may feel isolated, they’re far from alone. Many other women have such problems, too. In fact, nea...
  • Cancer that spreads to the liver poses a significant threat to patients, and a great challenge to surgeons. The organ’s anatomical complexity and its maze of blood vessels make removal of tumors difficult, even for specialized liver cancer surgeons. Following chemotherapy, the livers of cancer patients are not ...