A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Molecular Medicine Bookmark and Share

Molecular Medicine

The Department of Molecular Medicine of Beckman Research Institute of City of Hope  advances translational medicine through breakthroughs in basic science using chemical biology and genomic approaches. Our investigators lead cutting-edge research to determine the mechanisms underlying cancer and other serious diseases such as diabetes. The goal of the department is to customize prevention and treatment of such illnesses by developing targeted therapies for an individual’s genomic profile. Success produces more effective clinical responses to our treatments and less drug toxicity and resistance.
 
The department is composed of a carefully crafted team of experts in chemistry, biology, biochemistry and biophysics that identifies new target molecules to treat cancer, creates personalized medicines from natural products, develops bioorganic approaches for cancer therapy, and evaluates genomic markers to predict cancer risk and response to therapy. By collaborating with multidisciplinary groups that include basic, translational and clinical researchers throughout City of Hope, we transform our key findings into novel therapies that improve the quality of life for patients everywhere.
 
The department has a robust pipeline of novel, molecularly targeted therapeutics that includes engineered antibodies and small molecules. To facilitate the translation of these and other clinical candidates, the department is home to the Chemical GMP Synthesis Facility (CGSF),   which is a 3000-square-foot, state-of-the-art manufacturing facility where our small and large molecule therapeutics are prepared for phase I and II clinical trials. The CGSF plays a key role in bridging basic science and translational medicine at City of Hope and allows for more efficient and cost-effective means to translate our science into clinical practice. We are able to bring promising new therapies to the patient faster and more effectively. 

To accomplish our mission, the Molecular Medicine team uses approaches and technologies that include:
  • sophisticated organic synthesis and medicinal chemistry
  • high-tech protein engineering
  • functional genomics, proteomics, and microarray gene expression profiling
  • high throughput screens of plant extracts and chemical libraries
  • advanced NMR spectroscopy and computational modeling
  • state-of-the-art X-ray crystallography
  • leading-edge super-resolution microscopy
 
These activities are supported by the Drug Discovery and Structural Biology (DDSB) Core, which is also housed in the department.
 
 
Laboratory Research
 
 
Jacob Berlin, Ph.D. - Molecular medicine
Dr. Berlin’s research group is focused on the application of nanomaterials for the diagnosis and treatment of cancer.
 
Yuan Chen, Ph.D. - Ubiquitin-like modifications
Dr. Chen investigates post-translational modifications by ubiquitin-like proteins via a wide range of techniques that include determination of protein structures and dynamics by NMR, investigation of enzyme mechanisms by biochemical and biophysical means, and examination of the role of these modifications in response to DNA damage by cellular and molecular biology methods.
 
David Horne, Ph.D., chair  - Synthetic/medicinal chemistry
Dr. Horne’s laboratory specializes in the synthesis of complex natural products and derivatives to develop molecularly targeted agents that are less toxic and more effective in treating the unmet needs in cancer and diabetes.
 
Tijana Jovanovic-Talisman, Ph.D. - Super-resolution microscopy
Dr. Jovanovic-Talisman’s research group employs novel, quantitative imaging techniques and nano-biological assays to investigate biological mechanisms and advance therapeutics.

Theodore G. Krontiris, M.D., Ph.D. - Genetic risk and disease
Dr. Krontiris and his group examine the relationship between certain unstable regions of the genome, known as hypervariable minisatellites, and cancer risk.

John Termini, Ph.D. - Molecular medicine
Members of Dr. Termini's laboratory are interested in understanding the role of DNA adducts in cancer. This encompasses mechanisms of formation, structure elucidation of novel adducts, quantitative determination in vivo, functional implications, and removal/repair.

John Williams, Ph.D. - X-ray crystallography
Dr. Williams specializes in the use of X-ray crystallography to study protein-protein and drug-protein interactions for the design of novel therapeutic agents for the treatment of cancer.
 

Molecular Medicine Faculty

Molecular Medicine

Molecular Medicine

The Department of Molecular Medicine of Beckman Research Institute of City of Hope  advances translational medicine through breakthroughs in basic science using chemical biology and genomic approaches. Our investigators lead cutting-edge research to determine the mechanisms underlying cancer and other serious diseases such as diabetes. The goal of the department is to customize prevention and treatment of such illnesses by developing targeted therapies for an individual’s genomic profile. Success produces more effective clinical responses to our treatments and less drug toxicity and resistance.
 
The department is composed of a carefully crafted team of experts in chemistry, biology, biochemistry and biophysics that identifies new target molecules to treat cancer, creates personalized medicines from natural products, develops bioorganic approaches for cancer therapy, and evaluates genomic markers to predict cancer risk and response to therapy. By collaborating with multidisciplinary groups that include basic, translational and clinical researchers throughout City of Hope, we transform our key findings into novel therapies that improve the quality of life for patients everywhere.
 
The department has a robust pipeline of novel, molecularly targeted therapeutics that includes engineered antibodies and small molecules. To facilitate the translation of these and other clinical candidates, the department is home to the Chemical GMP Synthesis Facility (CGSF),   which is a 3000-square-foot, state-of-the-art manufacturing facility where our small and large molecule therapeutics are prepared for phase I and II clinical trials. The CGSF plays a key role in bridging basic science and translational medicine at City of Hope and allows for more efficient and cost-effective means to translate our science into clinical practice. We are able to bring promising new therapies to the patient faster and more effectively. 

To accomplish our mission, the Molecular Medicine team uses approaches and technologies that include:
  • sophisticated organic synthesis and medicinal chemistry
  • high-tech protein engineering
  • functional genomics, proteomics, and microarray gene expression profiling
  • high throughput screens of plant extracts and chemical libraries
  • advanced NMR spectroscopy and computational modeling
  • state-of-the-art X-ray crystallography
  • leading-edge super-resolution microscopy
 
These activities are supported by the Drug Discovery and Structural Biology (DDSB) Core, which is also housed in the department.
 
 
Laboratory Research
 
 
Jacob Berlin, Ph.D. - Molecular medicine
Dr. Berlin’s research group is focused on the application of nanomaterials for the diagnosis and treatment of cancer.
 
Yuan Chen, Ph.D. - Ubiquitin-like modifications
Dr. Chen investigates post-translational modifications by ubiquitin-like proteins via a wide range of techniques that include determination of protein structures and dynamics by NMR, investigation of enzyme mechanisms by biochemical and biophysical means, and examination of the role of these modifications in response to DNA damage by cellular and molecular biology methods.
 
David Horne, Ph.D., chair  - Synthetic/medicinal chemistry
Dr. Horne’s laboratory specializes in the synthesis of complex natural products and derivatives to develop molecularly targeted agents that are less toxic and more effective in treating the unmet needs in cancer and diabetes.
 
Tijana Jovanovic-Talisman, Ph.D. - Super-resolution microscopy
Dr. Jovanovic-Talisman’s research group employs novel, quantitative imaging techniques and nano-biological assays to investigate biological mechanisms and advance therapeutics.

Theodore G. Krontiris, M.D., Ph.D. - Genetic risk and disease
Dr. Krontiris and his group examine the relationship between certain unstable regions of the genome, known as hypervariable minisatellites, and cancer risk.

John Termini, Ph.D. - Molecular medicine
Members of Dr. Termini's laboratory are interested in understanding the role of DNA adducts in cancer. This encompasses mechanisms of formation, structure elucidation of novel adducts, quantitative determination in vivo, functional implications, and removal/repair.

John Williams, Ph.D. - X-ray crystallography
Dr. Williams specializes in the use of X-ray crystallography to study protein-protein and drug-protein interactions for the design of novel therapeutic agents for the treatment of cancer.
 

Molecular Medicine Faculty

Molecular Medicine Faculty

Overview
Beckman Research Institute of City of Hope is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.
 
 
Research Departments/Divisions

City of Hope is a leader in translational research - integrating basic science, clinical research and patient care.
 

Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

City of Hope’s Irell & Manella Graduate School of Biological Sciences equips students with the skills and strategies to transform the future of modern medicine.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
NEWS & UPDATES
  • Advances in cancer treatment, built on discoveries made in the laboratory then brought to the bedside, have phenomenally changed the reality of living with a cancer diagnosis. More than any other time in history, people diagnosed with cancer are more likely to survive and to enjoy a high quality of life. Howeve...
  • While health care reform has led to an increase in the number of people signing up for health insurance, many people remain uninsured or are not taking full advantage of the health benefits they now have. Still others are finding that, although their premiums are affordable, they aren’t able to see the do...
  • Kidney cancer rates and thyroid cancer rates in adults have continued to rise year after year. Now a new study has found that incidence rates for these cancers are also increasing in children — particularly in African-American children. The study, published online this month in Pediatrics, examined childhood ca...
  • Thyroid cancer has become one of the fastest-growing cancers in the United States for both men and women. The chance of being diagnosed with the cancer has nearly doubled since 1990. This year an estimated 63,000 people will be diagnosed with thyroid cancer in the United States and nearly 1,900 people will die ...
  • Older teenagers and young adults traditionally face worse outcomes than younger children when diagnosed with brain cancer and other central nervous system tumors. A first-of-its-kind study shows why. A team of researchers from the departments of Population Sciences and Pathology at City of Hope recently examine...
  • Cancer treatment can take a toll on the mouth, even if a patient’s cancer has nothing to do with the head or throat, leading to a dry mouth, or a very sore mouth, and making it difficult to swallow or eat. Here’s some advice from the National Cancer Institute (NCI)  on how to ease cancer-related dis...
  • Radiation oncology is one of the three main specialties involved in the successful treatment of cancer, along with surgical oncology and medical oncology. Experts in this field, known as radiation oncologists, advise patients as to whether radiation therapy will be useful for their cancer – and how it can best ...
  • There’s more to cancer care than simply helping patients survive. There’s more to cancer treatment than simple survival. Constant pain should not be part of conquering cancer,  insists Betty Ferrell, Ph.D., R.N., director of nursing research and education at City of Hope. She wants patients and caregivers...
  • Even its name is daunting. Systemic mastocytosis is a fatal disease of the blood with no known cure. But a new study suggests a bone marrow transplant may be the answer for some patients. While rare, systemic mastocytosis is resistant to treatment with drugs and, when aggressive, can be fatal within four years ...
  • Could what you eat affect the health of your chromosomes? The short answer is, “Yes.” Researchers led by Dustin Schones, Ph.D., assistant professor in the Department of Cancer Biology, and Rama Natarajan, Ph.D., director of the Division of Molecular Diabetes Research and the National Business Products Industry ...
  • September is Prostate Cancer Awareness Month. Here, Bertram Yuh, M.D., assistant clinical professor in the Division of Urology and Urologic Oncology at City of Hope, explains the importance of understanding the risk factors for the disease and ways to reduce those risks, as well as overall prostate health. “Wha...
  • ** Learn more about prostate health, plus prostate cancer research and treatment, at City of Hope. ** Learn more about getting a second opinion at City of Hope by visiting us online or by calling 800-826-HOPE (4673). City of Hope staff will explain what’s required for a consult at City of Hope and help yo...
  • Childhood cancer survival rates have increased dramatically over the past 40 years. More than 80 percent of children with cancer now survive five years or more, which is a tremendous feat. Despite the survival rate increase, cancer continues to be the No. 1 disease killer and second-leading cause of death in ch...
  • Although a stem cell transplant can be a lifesaving procedure for people diagnosed with a blood cancer or blood disorder, the standard transplant may not be appropriate for all patients. This is because the conditioning regimen (the intensive chemotherapy and/or radiation treatments preceding the transplant) is...
  • Brain tumor removal would seem to be the obvious course of action in the wake of a brain tumor diagnosis, but that’s not always the case. Some tumors are too difficult for many surgeons to reach or too close to areas that control vital functions. Removing them just proves too risky. A new device being con...