A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Molecular and Cellular Biology Bookmark and Share

Molecular and Cellular Biology

City of Hope’s Department of Molecular and Cellular Biology, originally Molecular Genetics, was formed in 1982 under the direction of Keiichi Itakura, Ph.D., professor of molecular biology. Research interests in the department include an array of biological systems and problems, but the unifying theme is mechanisms regulating expression of genetic information at both the transcriptional level (where DNA directs the synthesis of RNA) and the post-transcriptional level (meaning how genes control protein synthesis from newly-transcribed RNAs).

The department includes eight independent laboratories, as well as the Electron Microscopy and Atomic Force Microscopy Core Facility, overseen by Marcia Miller, Ph.D. and Zhuo Li, Ph.D.

Investigators within the department actively collaborate with investigators in the medical center, making important contributions to clinical investigations at City of Hope. The faculty also collaborates with the wider academic and scientific community. Faculty members have served numerous leadership roles, including with the National Institutes of Health, American Cancer Society and the Army Breast Cancer Research Program.

Department faculty members also teach and mentor graduate students in City of Hope’sIrell & Manella Graduate School of Biological Sciences. The department offers students the opportunity to carry out research in genetics, developmental biology, molecular genetics, molecular biochemistry, cell biology, molecular virology, and molecular and cellular immunology.
 
Laboratory Research

John J. Rossi, Ph.D. - siRNA, ribozymes, aptamers and genetic therapies
The focus of this laboratory is the biology and therapeutic application of small RNAs, with particular emphasis on small interfering RNAs (siRNAs) and ribozymes as therapeutic agents for the treatment of HIV infection.

Adam Bailis, Ph.D. – Genetics and molecular biology
This laboratory uses genetic and molecular biological approaches to study how DNA replication and repair are coordinated in the maintenance of genome stability.

Mark Boldin, M.D., Ph.D. – Noncoding RNA control of mammalian hematopoiesis, immunity and cancer
Research in this lab is focused on the biology of noncoding RNA and the understanding of its role in the regulation of inflammation and cancer using molecular, biological and genetic approaches.
 
John Burnett, Ph.D. - Gene therapy and genome engineering
With a focus on gene and RNA-based therapies and targeted genome editing, this laboratory develops advanced therapeutics for cancer, genetic diseases, and infectious diseases, including HIV/AIDS.

Keiichi Itakura, Ph.D. – Molecular biology
The laboratory of Keiichi Itakura, Ph.D.,studies the role of ARID transcription factors in the development and maturation of adipocytes and carcinogenesis. They also study molecular events in energy balance, as well as the functions of homeobox genes in prostate cancer.

Ren-Jang Lin, Ph.D. – RNA processing and regulatory RNA
The research objectives of this laboratory are two-fold, both centered on RNA: to decipher the molecular mechanism of RNA processing, and to reveal novel roles of RNA in regulating gene expression, with emphasis on aberrant cellular factors linked to human diseases.

Linda Malkas, Ph.D. – DNA replication/repair and human disease
The laboratory focuses on understanding the mechanisms mediating human cell DNA replication and repair and applying these discoveries to the development for new biomarkers and molecular targets for cancer.

Marcia Miller, Ph.D. – Molecular immunogenetics
This lab uses the chicken as their experimental model to study how genetic polymorphism influences the incidence of infection and cancer.

Department of Molecular and Cellular Biology Research Highlights

Genome Editing
Targeted genome engineering technologies have emerged as a genetic tool for biological research and as a new class of therapies in biomedicine.  Using the RNA-guided CRISPR/Cas9 system, zinc-finger nucleases (ZFNs), or TAL effector nucleases (TALENs), several labs are using genome engineering to study the functions of protein-coding and noncoding genes and to develop novel therapeutics for genetic and acquired diseases.
 
Yeast genetics; post-transcriptional processing
The department maintains extensive expertise in yeast genetics and molecular biology. Studies focus on mechanisms involved in homologous recombination and post-transcriptional processing of premessenger RNAs. Research also includes the development and applications of RNA aptamers regulating diverse processes ranging from pre-mRNA splicing to receptor-mediated delivery of small interfering RNAs (siRNAs) to treat cancer and viral infections.

Epigenetics
Defining the epigenetic mechanisms regulating gene expression is vital to understanding both normal development and carcinogenesis. Investigative efforts include determining mechanisms of genetic imprinting and the role of small RNAs in heterochromatin formation. Research on the function of small RNAs is an important program in the department. There is also strong emphasis on how microRNA functions as a post-transcriptional regulator of gene expression. Several laboratories are exploring therapeutic applications of RNA interference.

DNA replication/repair and human disease
Organisms need to safeguard genetic information to prevent the damaging effects of aging and disease. This is accomplished by accurate replication of DNA and by repair of any damage incurred as a result of endogenous or exogenous factors. New exciting details about DNA replication and repair are being discovered. These processes are proving to be highly interconnected, and could lead to treatments for various diseases and age-related disorders.

Biochemistry of DNA damage and repair
Understanding how DNA is damaged, both by mutagens and by treatments such as chemotherapy and radiotherapy, and the mechanisms governing DNA repair or the failure thereof, are essential to progress in developing better prevention and treatment strategies for a variety of cancers.

ARID transcription factors
This class of DNA-binding proteins plays multiple roles in the normal development of a variety of tissues, most prominently fat, bone and muscle. Recent discoveries suggest that these factors help to create activating "bookmarks" in genes that are crucial for establishing and maintaining the identities of these tissues. Therefore, the study of ARID transcription factors may lead to a greater understanding of medical problems ranging from obesity and diabetes to muscular injury, skeletal defects, and cancer.

Genetic influences in responses to cancer and infection
One project focuses on genetic influences in the incidence of Marek’s T-cell lymphoma.  Another is centered on chicken MR1 polymorphism and microbiota that may caused disease in humans.

Non-coding RNA control of mammalian hematopoiesis, immunity and cancer
Understanding the molecular mechanisms that govern immune cell development and function is key for the advance of novel therapeutic approaches to treat autoimmunity and cancer. Noncoding RNAs, in particular microRNAs, play a critical role in shaping the mammalian immune response and hematopoiesis, and are the focus of our research interest.

Molecular and Cellular Biology Faculty

Molecular and Cellular Biology

Molecular and Cellular Biology

City of Hope’s Department of Molecular and Cellular Biology, originally Molecular Genetics, was formed in 1982 under the direction of Keiichi Itakura, Ph.D., professor of molecular biology. Research interests in the department include an array of biological systems and problems, but the unifying theme is mechanisms regulating expression of genetic information at both the transcriptional level (where DNA directs the synthesis of RNA) and the post-transcriptional level (meaning how genes control protein synthesis from newly-transcribed RNAs).

The department includes eight independent laboratories, as well as the Electron Microscopy and Atomic Force Microscopy Core Facility, overseen by Marcia Miller, Ph.D. and Zhuo Li, Ph.D.

Investigators within the department actively collaborate with investigators in the medical center, making important contributions to clinical investigations at City of Hope. The faculty also collaborates with the wider academic and scientific community. Faculty members have served numerous leadership roles, including with the National Institutes of Health, American Cancer Society and the Army Breast Cancer Research Program.

Department faculty members also teach and mentor graduate students in City of Hope’sIrell & Manella Graduate School of Biological Sciences. The department offers students the opportunity to carry out research in genetics, developmental biology, molecular genetics, molecular biochemistry, cell biology, molecular virology, and molecular and cellular immunology.
 
Laboratory Research

John J. Rossi, Ph.D. - siRNA, ribozymes, aptamers and genetic therapies
The focus of this laboratory is the biology and therapeutic application of small RNAs, with particular emphasis on small interfering RNAs (siRNAs) and ribozymes as therapeutic agents for the treatment of HIV infection.

Adam Bailis, Ph.D. – Genetics and molecular biology
This laboratory uses genetic and molecular biological approaches to study how DNA replication and repair are coordinated in the maintenance of genome stability.

Mark Boldin, M.D., Ph.D. – Noncoding RNA control of mammalian hematopoiesis, immunity and cancer
Research in this lab is focused on the biology of noncoding RNA and the understanding of its role in the regulation of inflammation and cancer using molecular, biological and genetic approaches.
 
John Burnett, Ph.D. - Gene therapy and genome engineering
With a focus on gene and RNA-based therapies and targeted genome editing, this laboratory develops advanced therapeutics for cancer, genetic diseases, and infectious diseases, including HIV/AIDS.

Keiichi Itakura, Ph.D. – Molecular biology
The laboratory of Keiichi Itakura, Ph.D.,studies the role of ARID transcription factors in the development and maturation of adipocytes and carcinogenesis. They also study molecular events in energy balance, as well as the functions of homeobox genes in prostate cancer.

Ren-Jang Lin, Ph.D. – RNA processing and regulatory RNA
The research objectives of this laboratory are two-fold, both centered on RNA: to decipher the molecular mechanism of RNA processing, and to reveal novel roles of RNA in regulating gene expression, with emphasis on aberrant cellular factors linked to human diseases.

Linda Malkas, Ph.D. – DNA replication/repair and human disease
The laboratory focuses on understanding the mechanisms mediating human cell DNA replication and repair and applying these discoveries to the development for new biomarkers and molecular targets for cancer.

Marcia Miller, Ph.D. – Molecular immunogenetics
This lab uses the chicken as their experimental model to study how genetic polymorphism influences the incidence of infection and cancer.

Research Highlights

Department of Molecular and Cellular Biology Research Highlights

Genome Editing
Targeted genome engineering technologies have emerged as a genetic tool for biological research and as a new class of therapies in biomedicine.  Using the RNA-guided CRISPR/Cas9 system, zinc-finger nucleases (ZFNs), or TAL effector nucleases (TALENs), several labs are using genome engineering to study the functions of protein-coding and noncoding genes and to develop novel therapeutics for genetic and acquired diseases.
 
Yeast genetics; post-transcriptional processing
The department maintains extensive expertise in yeast genetics and molecular biology. Studies focus on mechanisms involved in homologous recombination and post-transcriptional processing of premessenger RNAs. Research also includes the development and applications of RNA aptamers regulating diverse processes ranging from pre-mRNA splicing to receptor-mediated delivery of small interfering RNAs (siRNAs) to treat cancer and viral infections.

Epigenetics
Defining the epigenetic mechanisms regulating gene expression is vital to understanding both normal development and carcinogenesis. Investigative efforts include determining mechanisms of genetic imprinting and the role of small RNAs in heterochromatin formation. Research on the function of small RNAs is an important program in the department. There is also strong emphasis on how microRNA functions as a post-transcriptional regulator of gene expression. Several laboratories are exploring therapeutic applications of RNA interference.

DNA replication/repair and human disease
Organisms need to safeguard genetic information to prevent the damaging effects of aging and disease. This is accomplished by accurate replication of DNA and by repair of any damage incurred as a result of endogenous or exogenous factors. New exciting details about DNA replication and repair are being discovered. These processes are proving to be highly interconnected, and could lead to treatments for various diseases and age-related disorders.

Biochemistry of DNA damage and repair
Understanding how DNA is damaged, both by mutagens and by treatments such as chemotherapy and radiotherapy, and the mechanisms governing DNA repair or the failure thereof, are essential to progress in developing better prevention and treatment strategies for a variety of cancers.

ARID transcription factors
This class of DNA-binding proteins plays multiple roles in the normal development of a variety of tissues, most prominently fat, bone and muscle. Recent discoveries suggest that these factors help to create activating "bookmarks" in genes that are crucial for establishing and maintaining the identities of these tissues. Therefore, the study of ARID transcription factors may lead to a greater understanding of medical problems ranging from obesity and diabetes to muscular injury, skeletal defects, and cancer.

Genetic influences in responses to cancer and infection
One project focuses on genetic influences in the incidence of Marek’s T-cell lymphoma.  Another is centered on chicken MR1 polymorphism and microbiota that may caused disease in humans.

Non-coding RNA control of mammalian hematopoiesis, immunity and cancer
Understanding the molecular mechanisms that govern immune cell development and function is key for the advance of novel therapeutic approaches to treat autoimmunity and cancer. Noncoding RNAs, in particular microRNAs, play a critical role in shaping the mammalian immune response and hematopoiesis, and are the focus of our research interest.

Molecular and Cellular Biology Faculty

Molecular and Cellular Biology Faculty

Overview
Beckman Research Institute of City of Hope is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.
 
 
Research Departments/Divisions

City of Hope is a leader in translational research - integrating basic science, clinical research and patient care.
 

Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

City of Hope’s Irell & Manella Graduate School of Biological Sciences equips students with the skills and strategies to transform the future of modern medicine.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 


NEWS & UPDATES
  • The physical side effects of cancer can damage anyone’s self-confidence, but especially that of women who, rightly or wrongly, are more likely to find their appearance (or their own perception of their appearance) directly connected to their ability to face the world with something resembling ap...
  • The promise of stem cell therapy has long been studied in laboratories. Now, as medicine enters an era in which this therapy will be increasingly available to patients, the nurses who help deliver it will be in the spotlight. City of Hope, which has launched its Alpha Clinic for Cell Therapy and Innovation (ACT...
  • Just because you can treat a condition, such as high cholesterol, at the end of life — well, that doesn’t mean you should. That’s the basic lesson of a study to be published March 30 in JAMA Internal Medicine. The ramifications go far beyond that. The research, in which City of Hope’s Betty Fe...
  • The understanding of the relationship between genetics and cancer risk continues to grow, with more genetic testing than ever before available to patients. However, the adage that a little knowledge is a dangerous thing is applicable: Without context for what a test result means, and without meaningful guidance...
  • Standard prostate biopsies haven’t changed significantly in the past 30 years – nor have the problems inherent with them. Regular biopsies have an expected error rate: Tumors may potentially be undersampled and, 30 percent of the time, men who undergo a radical prostatectomy are found to have more aggress...
  • In the field of cancer, patients have had surgery, chemotherapy and radiation therapy as options. Now, as City of Hope officially opens the Alpha Clinic for Cellular Therapy and Innovation, patients battling cancer and other life-threatening diseases have another option: stem-cell-based therapy. The Alpha Clini...
  • How does the environment affect our health? Specifically, how does it affect our risk of cancer? City of Hope physicians and researchers recently answered those questions in an Ask the Experts event in Corona, California, explaining the underlying facts about how the environment can affect our health. Moderator...
  • Nurses and other medical professionals have come to understand that it’s not enough just to fight disease. They also must provide pain relief, symptom control, and an unrelenting commitment to improve patients’ quality of life — especially at the end of life. Not too long ago, this was a relatively ...
  • “Tonight, I’m launching a new precision medicine initiative to bring us closer to curing diseases like cancer.” These were the words of President Barack Obama on Jan. 20, 2015, during his State of the Union address. So what is precision medicine, and how close are we to making it a reality for...
  • March is Colon Cancer Awareness Month. How sad, yet how serendipitous, that the co-creator of “The Simpsons” Sam Simon passed away in March after a four-year battle against colon cancer. What message can we all learn from his illness that can help us prevent and overcome colon cancer in our own lives? Colon can...
  • Misagh Karimi, M.D., assistant clinical professor, is a medical oncologist at one of City of Hope’s newest community practice locations, located in Corona in Riverside County. A recent community health report from Corona’s public health department stated that obesity rates for teens and adults in Riverside Coun...
  • In 1975, the median survival for patients with ovarian cancer was about 12 months. Today, the median survival is more than 5 years. Although researchers and clinicians are far from satisfied, the progress in ovarian cancer treatment is encouraging, said Robert Morgan, M.D., F.A.C.P., professor of medical oncolo...
  • Colorectal cancer may be one of the most common cancers in both men and women, but it’s also one of the most curable cancers. Today, because of effective screening tests and more advanced treatment options, there are more than 1 million survivors of colorectal cancer in the United States. Here, colorectal...
  • Breast cancer treatment can damage a woman’s ability to become pregnant, making the impact on fertility one of the key factors that many consider when choosing a therapy regimen. Now a study has found that breast cancer patients treated with a hormone-blocking drug in addition to chemotherapy were less li...
  • My colleagues in the clinic know I’ve got a soft spot. Last week, a patient of mine offered me a fantastic compliment. “You’re looking younger these days, Dr. Pal!” she said, offering me a big hug as she proceeded out of the clinic room. Lovely, I thought. The early morning workouts are paying off. She continue...