A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Liu, Chih-Pin, Ph.D. Research Bookmark and Share

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520

Liu, Chih-Pin, Ph.D. Research

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Lab Members

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Cancer cells are voracious eaters. Like a swarm of locusts, they devour every edible tidbit they can find. But unlike locusts, when the food is gone, cancer cells can’t just move on to the next horn o’ plenty. They have to survive until more food shows up — and they do. Mei Kong, Ph.D., assistant […]
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Repr...
  • When 25-year-old Angelina Mattos was diagnosed with Stage 4 oral cancer earlier this year, she learned that her only hope of survival was through the removal of her tongue, a surgery that leaves people without the ability to talk or eat normally, sometimes permanently ending their ability to speak. After hearin...
  • Two years ago, Joselyn Miller and her family sat together as stem cells from her brother’s bone marrow were infused into her – a precious gift of life that the family is excited to have the chance to pass to another patient in need. Today, the stem cell recipient is healthy. Her 23-year-old son Rex, who […...
  • Even as the overall rate of oral cancers in the United States steadily declines, the rate of tongue cancer is increasing — especially among white females ages 18 to 44. An oral cancer diagnosis, although rare, is serious. Only half of the people diagnosed with oral cancer are still alive after five years, accor...
  • Sometimes cancer found in the lungs is not lung cancer at all. It can be another type of cancer that originated elsewhere in the body and spread, or metastasized, to the lungs through the bloodstream or lymphatic system. These tumors are called lung metastases, or metastatic cancer to the lungs, and are not the...
  • When it comes to research into the treatment of hematologic cancers, City of Hope scientists stand out. One study that  they presented this week at the annual meeting of the American Society of Hematology suggests a new standard of care for HIV-associated lymphoma, another offers promise for the treatment of re...
  • Patients with HIV-associated lymphoma may soon have increased access to the current standard of care for some non-HIV infected patients – autologous stem cell transplants. Impressive new data, presented Monday at the annual meeting of the American Society of Hematology (ASH) in San Francisco, indicate that HIV-...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the Rose Parade is “Inspiring Stories.”...
  • The holidays can create an overwhelming urge to give to people in need — especially to sick children and families spending the holidays in a hospital room. That’s a good thing. Holiday donations of toys and gifts can bolster the spirits, and improve the lives, of people affected by illness, and hospitals ...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Here...
  • Cancer has a way of “talking” to the immune system and corrupting it to work on its own behalf instead of defending the body. Blocking this communication would allow the immune system to see cancer cells for what they are – something to be fought off – and stop them from growing. A breakthrough Scientists [R...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” By V...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” The ...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” In 2...