A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Liu, Chih-Pin, Ph.D. Research Bookmark and Share

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520

Liu, Chih-Pin, Ph.D. Research

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Lab Members

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • As far back as he can remember, Jonathan Yamzon, M.D., wanted to be a doctor. “I knew it from the get-go,” he said, matter-of-factly. “I always envisioned it as the ideal; the supreme thing one could do with one’s life.” The youngest of six children, Yamzon was barely a toddler when his family moved to [&...
  • There’s never a “good” time for cancer to strike. With testicular cancer, the timing can seem particularly unfair. This disease targets young adults in the prime of life; otherwise healthy people unaccustomed to any serious illness, let alone cancer. And suddenly … “I can only imagine what they must...
  • Sure, a healthy lifestyle can lower a person’s risk, but the impact of specific actions is harder to tease out. Diet, exercise, tobacco use, nutritional supplements, alcohol consumption … How important are each of these factors, individually? Does strict adherence to (or rejection of) one get you a pass o...
  • Health care decisions are tough. They’re even tougher when you – or loved ones – have to make them without a plan or a conversation. National Healthcare Decisions Day, on April 16,  is a nationwide initiative to demystify the health care decision-making process and encourage families to start talking. Ult...
  • The statistics, direct from the American Cancer Society, are sobering: Cancer death rates among African-American men are 27 percent higher than for white men. The death rate for African-American women is 11 percent higher compared to white women. Hispanics have higher rates of cervical, liver and stomach cancer...
  • “Lucky” is not usually a term used to describe someone diagnosed with cancer.  But that’s how 34-year-old Alex Camargo’s doctor described him when he was diagnosed with thyroid cancer — the disease is one of the most treatable cancers at all stages. That doctor was ultimately proved righ...
  • Geoff Berman, 61, starts his day with the motto: “The sun is up. I’m vertical. It’s a good day.” Ever since he’s been in remission from lymphoma, Berman makes a special point of being grateful for each day, reminding himself that being alive is a gift. “I just enjoy living,” he said. “I give e...
  • Neural stem cells have a natural ability to seek out cancer cells in the brain. Recent research from the laboratories of Michael Barish, Ph.D., and Karen Aboody, M.D., may offer a new explanation for this attraction between stem cells and tumors. Prior to joining City of Hope, Aboody, now a professor in the Dep...
  • The American Society of Clinical Oncology, a group that includes more than 40,000 cancer specialists around the country, recently issued a list of the five most profound cancer advances over the past five decades. Near the top of the list was the introduction of chemotherapy for testicular cancer. To many in th...
  • “The dying, as a group, have been horribly underserved.” So says Bonnie Freeman, R.N., D.N.P., A.N.P.-B.C., A.C.H.P.N., a nurse practitioner in the Department of Supportive Care Medicine at City of Hope. After nearly 25 years, primarily in critical care nursing, Freeman saw that the needs of the dying were ofte...
  • “Are we the only ones who feel this way?” Courtney Bitz, L.C.S.W., a social worker in the Sheri & Les Biller Patient and Family Resource Center at City of Hope, often hears this question from couples trying to cope with a breast cancer diagnosis and still keep their relationship strong. The ques...
  • Diabetes investigators at City of Hope are studying the full trajectory of diabetes and metabolic disorders, as well as complications of the disease. One especially promising approach focuses on proteins known as growth factors. Led by Fouad Kandeel, M.D., Ph.D., chair and professor of the Department of Clinica...
  • Acute myeloid leukemia is the most common form of acute leukemia among adults, accounting for 18,000 diagnoses in 2014. Two decades ago, in 1996, the National Comprehensive Cancer Network (NCCN) published its first guidelines for treatment of acute myeloid leukemia, or AML. Margaret O’Donnell, M.D., assoc...
  • Children diagnosed with cancer are more likely than ever before to survive the disease, but with a potential new set of health problems caused by the cancer treatment itself. Those problems can particularly affect the heart, and as doctors and other health care workers try to assess how best to care for this sp...
  • Karen Reckamp, M.D., M.S., has an office next to my own, and we often see patients at the same time. As such, I’ve gotten to know her quite well over the years, and I’ve also gotten a glimpse of many of her patients. She specializes in lung cancer, and most of her patients have tumors […]