A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE

Liu, Chih-Pin, Ph.D. Research

Chih-Pin Liu, Ph.D. Research
T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.

Lab Members

Chih-Pin Liu, Ph.D.
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
  • Counter-intuitive though it might seem, a prostate cancer diagnosis shouldn’t always lead to immediate prostate cancer treatment. Although prostate cancer is the second-leading cancer killer of men, behind lung cancer, and causes more than 29,000 deaths in the U.S. each year, in many cases, the tumors are...
  • Radiology is one of the cornerstones of any hospital. It is a key diagnostic branch of medicine essential for the initial diagnosis of many diseases and has an important role in monitoring a patient’s treatment and predicting outcome. Radiology is the specialty considered to be both the “eyes” and “ears” of med...
  • Donating blood and platelets saves lives. We all know this. Yet every summer, potential blood donors become distracted by vacations and schedule changes. As a result, blood donations fall dramatically across the nation, leaving hospitals frantically trying to bring in much-needed blood for their patients. Earli...
  • To be a great cancer hospital, you need a great oncology program. Just ask City of Hope – and Becker’s Hospital Review. The health care publishing industry stalwart, described as the “leading hospital magazine for hospital business news and analysis for hospital and health system executives,” recently selected ...
  • Diagnostic errors are far from uncommon. In fact, a recent study found that they affect about 12 million people, or 1 in 20 patients,  in the U.S. each year. With cancer, those errors in diagnosis can have a profound impact. A missed or delayed diagnosis can make the disease that much harder to treat, as the Ag...
  • Eleven years ago, lymphoma patient Christine Pechera began the long road toward a cancer-free life. She had been diagnosed with non-Hodgkin lymphoma and told by doctors elsewhere that her lifespan likely would be measured in months, not years. Refusing to give up, she came to City of Hope for a second opinion. ...
  • Brain surgery is not for the faint of heart. It takes courage, as well as curiosity and compassion. The truly great surgeons also have a desire to find new, and better ways, of healing the brain. Enter Behnam Badie, M.D., chief of neurosurgery at City of Hope. Now a pioneer in brain tumor treatment, Badie enter...
  • Elizabeth Budde, M.D., Ph.D., wants to encourage infighting. She aims to turn the immune system on itself — to the benefit of patients with acute myeloid leukemia, or AML. AML arises when abnormal white blood cells grow out of control, amassing in the bone marrow and interfering with normal blood cell developme...
  • Six, to date; more soon. Outpatient bone marrow transplants, that is. Finding new ways to deliver quality care with the greatest benefit is a priority for a patient-centered institution like City of Hope. For example, not every bone marrow transplant patient needs to check into the hospital for treatment. In fa...
  • The best measure of success in the fight against cancer is in lives saved and families intact, in extra days made special simply because they exist. Yuman Fong, M.D., chair of the Department of Surgery at City of Hope, understands what precedes that special awareness. When cancer strikes, one minute a person ma...
  • In cancer, expertise matters. So do survival rates, patient safety, patient services and many other factors. City of Hope understands this, as does U.S.News & World Report. The magazine’s 2014-2015 list of best hospitals for cancer once again includes City of Hope, ranking the institution 12 out of 900 elig...
  • At 29, Kommah McDowell was a successful young professional engaged to be married to her best friend. She worked in the financial services sector and kick-boxed to keep in shape and to relax. Then came the diagnosis of triple-negative inflammatory breast cancer, a rare and very aggressive form of breast cancer. ...
  • The well-known drug tamoxifen might not always be the best choice for premenopausal women who have undergone treatment for breast cancer and face a heightened risk of recurrence. A new study suggests that the aromatase inhibitor exemestane, or Aromasin, works slightly better than tamoxifen in preventing cancer ...
  • At age 44, Bridget Hanchette, a mother of three from La Crosse, Wisconsin, was diagnosed with grade IV glioblastoma, the most aggressive type of malignant brain tumor. The cancer grows and spreads quickly, making it difficult to treat. Most patients with this diagnosis are not given much hope, but Hanchette’s i...
  • Survival rates for childhood cancer have improved tremendously over the past few decades, but postcancer care hasn’t always kept up. More children than ever are now coping with long-term complications and side effects caused by their disease and treatment — one of those being learning difficulties. A new ...