A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Liu, Chih-Pin, Ph.D. Research Bookmark and Share

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520

Liu, Chih-Pin, Ph.D. Research

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Lab Members

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • We’ve all heard the mantra: Cancer screening saves lives. And it does, especially with colorectal cancer. Regular colonoscopies have been proven to reduce the risk of colorectal cancer death by up to 70 percent. Screening for colorectal cancer using the even simpler fecal occult blood tests has been found to re...
  • Pick up any biotech industry report and you’re guaranteed to come across one term repeatedly – CAR-T therapy. A fierce competition is now underway to bring CAR-T treatments to market – several companies (Juno, Novartis, Kite and Cellectis, to name a few) have major stakes in the race. I’ve found the CAR-T buzz ...
  • Patients undergoing treatment at City of Hope know they will be receiving the best medical care available, that their treatment will be delivered with compassion and that their care will extend to their families. “When we treat a patient here, we treat a family,” says Jo Ann S. Namm, child life manager and spec...
  • Did you know that colorectal cancer equally affects men and women? Or that it’s the third-leading cause of cancer death in the U.S.? Most important, did you know that colorectal cancer is very treatable and highly curable if detected early? If you didn’t know these facts, it’s time to learn. M...
  • To celebrate the beginning of Lunar New  Year 2015, City of Hope honored not just a new lunar calendar, but also the diversity of the community it serves. On Jan. 21, as tens of thousands of people celebrated Lunar New Year (and the arrival of the Year of the Ram) in the streets of L.A.’s Chinatown, City of [&#...
  • The breakthroughs that have revolutionized cancer treatment, transforming cancer in many cases to a very manageable and even curable disease, started out as just ideas. “I will often tell patients there’s no therapy we’re using to help them that wasn’t derived from somebody’s idea in some laboratory, working la...
  • The prostate cancer screening debate, at least as it relates to regular assessment of prostate specific antigen levels, is far from over. The U.S. Preventive Services Task Force recommended against routine PSA screening for prostate cancer in 2012, maintaining that the routine use of the PSA blood test does mor...
  • Cancer patients should get more than medical treatment. They should get comprehensive, evidence-based care that addresses their full range of needs. That kind of patient-focused care is City of Hope’s specialty. Under the guidance of Dawn Gross, M.D., Ph.D., the new Arthur M. Coppola Family Chair in Suppo...
  • Think twice before tossing out those hormone replacement pills. Although a new Lancet study suggests that hormone replacement therapy could increase a woman’s risk of ovarian cancer, a City of Hope expert urges women to keep this news in perspective. Hormone replacement therapy is prescribed to help allev...
  • Don’t know what to take, or send, that friend of yours in the hospital? Try a paper plate — filled not with cookies or sweets, but an image of yourself. Ilana Massi, currently undergoing treatment at City of Hope for acute myeloid leukemia, can vouch for the power of such a gift. She’s surrounded herself [̷...
  • With precision medicine now a national priority, City of Hope has joined a novel research partnership designed to further understanding of cancer at the molecular level, ultimately leading to more targeted cancer treatments. The Oncology Research Information Exchange Network, or ORIEN, is the world’s larg...
  • The spinal cord is an integral part of the human body, connecting the brain to everything else. So when a tumor grows on the spine, any messages that the brain tries to send to the rest of the body are interrupted, making everyday tasks — such as walking — more difficult. This year an estimated 22,850 […]
  • Each year, thousands of patients with hematologic malignancies undergo allogeneic stem cell transplantation (that is, they receive a donor’s stem cells), offering them a chance at cure. Graft-versus-host disease is a potentially deadly complication of this therapy and occurs in approximately 25 to 60 perc...
  • Bertram Yuh, M.D., assistant clinical professor in the Division of Urology and Urologic Oncology at City of Hope, offers his perspective on the benefits of surgery for aggressive prostate cancer. For men walking out of the doctor’s office after a diagnosis of cancer, the reality can hit like a ton of bricks. Th...
  • Although many Hispanic women face a high risk of mutations in the BRCA1 and BRCA2 genes – increasing their risk of breast and ovarian cancer – screenings for these mutations can be prohibitively expensive in Mexico and other Latin American countries. As a result, too many women don’t get the information t...