A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Liu, Chih-Pin, Ph.D. Research Bookmark and Share

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520

Liu, Chih-Pin, Ph.D. Research

Chih-Pin Liu, Ph.D. Research

T-cells and Immunity
T-cells play a central role in the generation of the host’s immunity to infections and tumors, and in the regulation of autoimmunity and allergy.  A critical prerequisite for selection and maturation of T-cells is cell surface expression of the T-cell antigen receptor (TCR) complex, which is responsible for recognition of antigens and for transmitting signals inside the cell. These processes are regulated by the interaction of TCR with antigens presented by major histocompatibility complex (MHC) molecules expressed on antigen presenting cells. Research carried out in this laboratory investigates the molecular and cellular mechanisms underlying T-cell mediated immunity against tumors and the roles of T-cells in regulating inflammatory and autoimmune diseases.

Mechanisms underlying T-cell-mediated Immunity
Recognition of the MHC/antigen complex by TCRs generates a series of signaling events that regulate the behavior and function of T-cells. To study the molecular and cellular mechanisms regulating T-cell mediated immunity, we will use state-of-art molecular and proteomics (the study of proteins) approaches to identify the molecules regulating the activation and apoptosis of normal T cells and T cell leukemia. We will also investigate the in vivo role of these molecules using transgenic and gene knockout mice. These proteins may serve as molecular targets for modulating the function of T-cells and for the further immunotherapeutic treatment of various types of cancers. Moreover, we will perform experiments to determine the mechanisms that regulate T-cell functions responsible for tumor immunity and autoimmunity.

Regulation of Autoimmune Disease
In autoimmune diseases, such as type 1 diabetes, presentation of autoantigens by disease-associated MHC plays a critical role in the selection and activation of disease-associated T-cells.  It is now known that T-cells not only function as pathogenic T-cells that cause the disease but also function as regulatory T-cells that inhibit the disease. It has been shown that antigen-specific regulatory T-cells are more potent than a heterogeneous population of regulatory T cells in suppressing pathogenic processes. Therefore, it is desirable to use antigen-specific regulatory T cells to modulate the function of pathogenic T-cells to prevent autoimmune disease. It has been historically very difficult for immunologists to identify and isolate a sufficient number of antigen-specific T cells for further studies. We have addressed this question using novel multivalent MHC/ antigen tetramers, and have identified and isolated several lines of antigen-specific regulatory T-cells. We have demonstrated that the isolated regulatory T-cells can effectively inhibit type 1 diabetes.  Based on these findings, we will investigate the molecular and cellular mechanisms underlying the regulation of pathogenic T cell by these regulatory T cells that lead to prevention of the disease.  We will also examine whether these potent regulatory T cells can be used as a treatment to prevent the immune destruction of islet grafts in an animal model for islet transplantation.
 

Lab Members

Chih-Pin Liu, Ph.D. Lab Members

Chih-Pin Liu, Ph.D.
Professor
626-256-HOPE (4673),ext. 63455

Weiting Du, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 63427

Jiangying Shen, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 6037

Ding Wang, Ph.D.
Research Fellow
626-256-HOPE (4673),ext. 65254

Wenhui Lee, M.S.
Senior Research Associate
Research Associate
626-256-HOPE (4673),ext. 65525

Yueh-Wei Shen
Research Associate II
626-256-HOPE (4673),ext. 65520
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.

Learn more about
City of Hope's institutional distinctions, breakthrough innovations and collaborations.
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Approximately one in eight women will be diagnosed with breast cancer during her lifetime. Although the disease can have a profound impact on the patient and her loved ones, it can often be effectively treated with surgery, radiation therapy, hormone therapy and chemotherapy. Skin- and nipple-sparing surgeries,...
  • City of Hope is a leader in the diagnosis and treatment of skin cancer and precancerous conditions. Our multidisciplinary team of health care professionals takes an integrated approach to treating this disease by combining the latest research findings with outstanding patient care. In this podcast, Hans Schoell...
  • Patients with chronic lymphocytic leukemia may soon find themselves with improved treatment options. Interim results from a study not conducted at City of Hope suggest that, for patients with chronic lymphocytic leukemia, or CLL, a new oral drug given in combination with standard treatment significantly reduced...
  • The childhood journal of Kevin Chan, M.D., foreshadowed his future: At the tender age of 6, he wrote that he wanted to be a surgeon when he grew up. “I liked the idea of fixing broken arms and legs,” Chan said. “Back then, those were the procedures I could relate to.” Although his passion for […]
  • The outlook and length of survival has not changed much in the past 25 years for patients suffering from an aggressive form of pancreatic cancer known as pancreatic ductal adenocarcinoma (PDAC). These patients still have few options for therapy; currently available therapies are generally toxic and do not incre...
  • “With bladder cancer, the majority of patients that I see can be cured,” said urologist Kevin Chan, M.D., head of reconstructive urology at City of Hope. “The challenge is to get patients the same quality of life that they had before surgery.” To meet this challenge, Chan and the urologic team at City of Hope [...
  • Already pioneers in the use of immunotherapy, City of Hope researchers are now testing the bold approach to cancer treatment against one of medicine’s biggest challenges: brain cancer. This month, they will launch a clinical trial using patients’ own modified T cells to fight advanced brain tumors. One of but a...
  • Brain cancer may be one of the most-frightening diagnoses people can receive, striking at the very center of who we are as individuals. Further, it often develops over time, causing no symptoms until it’s already advanced. Listen to City of Hope Radio as Behnam Badie, M.D., director of the Brain Tumor Pro...
  • The whole is greater than the sum of its parts. It takes a village. No man is an island. Choose your aphorism: It’s a simple truth that collaboration usually is better than isolation. That’s especially true when you’re trying to introduce healthful habits and deliver health care to people at risk of disease and...
  • When Maryland Governor Larry Hogan announced earlier this week that he has the most common form of non-Hodgkin lymphoma, he was giving voice to the experience of more than 71,000 Americans each year. The announcement came with Hogan’s promise to stay in office while undergoing aggressive treatment for the...
  • The spine can be affected by many different kinds of tumors. Malignant, or cancerous, tumors can arise within the spine itself. Secondary spinal tumors, which are actually much more common, begin as cancers in another part of the body, such as the breast and prostate, and then spread, or metastasize, to the spi...
  • Although most cancer occurs in older adults, the bulk of cancer research doesn’t focus on this vulnerable and fast-growing population. City of Hope and its Cancer and Aging Research Team aim to change that, and they’re getting a significant boost from Professional Practice Leader Peggy Burhenn, R.N....
  • Liz Graef-Larcher’s first brain tumor was discovered by accident six years ago. The then-48-year-old with a long history of sinus problems and headaches had been sent for an MRI, and the scan found a lesion in her brain called a meningioma – a tumor that arises in the meninges, the layers of tissue that cover a...
  • The colon and rectum are parts of the body’s gastrointestinal system, also called the digestive tract. After food is digested in the stomach and nutrients are absorbed in the small intestine, the remaining material moves down into the lower large intestine (colon) where water and nutrients are absorbed. The low...
  • If there is one truism about hospital stays it is that patients want to get out. For many, however, the joy of being discharged is tempered by the unexpected challenges that recovery in a new setting may pose. Even with professional help, the quality of care and treatment that patients receive at City of Hope [...