A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Ku, Hsun Teresa, Ph.D. Research Bookmark and Share

Hsun Teresa Ku, Ph.D. Research

Identification and Characterization of Pancreatic Stem Cells
A functional pancreas consists of two types of tissue: exocrine and endocrine. The exocrine tissue mainly consists of acinar cells, which secrete bicarbonate and digestive enzymes. These secretions are collected by the pancreatic ductal system, which begins with centroacinar cells that are directly in contact with acinar cells. The prolongation of the terminal ducts, or alveoli, are lined by centroacinar cells and gradually merge into a main duct that drains into the duodenum. The endocrine tissue is organized as islets and contains cells that secrete glucagon, insulin, somatostatin, pancreatic polypeptide or grehlin. These endocrine hormones are released directly into the blood stream in response to metabolic signals.
 
Recently, there has been an intense interest in identifying pancreatic stem or progenitor cells, especially the endocrine progenitor cells, for the purpose of replacement therapy of Type 1 diabetes (T1D), a disease in which the insulin-secreting beta cells are specifically destroyed by autoimmunity. However, the existence of self-renewing multipotential stem cells in the pancreas remains elusive. Our laboratory is interested in the identification and characterization of pancreatic stem/progenitor cells, using both mouse models and cadaverous human pancreatic tissues for studies. We have established a quantitative and clonogenic progenitor cell assay in our laboratory, which will be a powerful tool to study the cellular and molecular mechanisms that govern the differentiation and proliferation of the pancreatic stem/progenitor cells at the single cell level.
 
Embryonic Stem Cell Therapy for Type 1 Diabetes
T1D is marked by a deficiency of the insulin-secreting β cells residing in the Islets of Langerhans within the pancreas due to autoimmune destruction. One of the long-term goals of our laboratory is to advance clinical cell-replacement therapy for patients with sever forms of T1D by developing a safe, reliable and abundant source of cells, derived from human stem cells that function like pancreatic islets. Toward this end, we have established an efficient and potentially cost-effective differentiation protocol, originally adapted from a mouse embryonic stem cell (ESC) differentiation method previously established in our laboratory, and generated a population of glucose-responsive, insulin-producing and secreting cells derived from human ESCs while in vitro. This cell population will be a suitable development candidate for clinical cell replacement therapy for T1D at City of Hope in the future.
 
Embryonic Stem Cells as a Cellular Tool for Screening of Molecules for Treatment of Diabetes
In the small molecule drug discovery field, the “bottom-up” approach, which is based on structural considerations of known targets, has not been as fruitful as was once promised. ESC technology ffers a potential solution to this bottleneck. ESCs can be grown in large numbers and maintained in a pluripotent state in vitro. They can also be induced in culture to differentiate into cells from all three germ layers in a relatively normal fashion that is faithful to development in vivo. Three properties make ES cells an ideal platform for drug discovery: first, ES cells can provide virtually inexhaustible quantities of target cells, which is necessary for screening of large numbers of compounds; second, ES cells can differentiate into mature cells with phenotypes that mimic their counterparts in vivo; and third, compared with immortalized cell lines, ES cells and their derivatives will provide a much more accurate platform for the “top-down” drug screening approach. Our laboratory is interested in high throughput screening (HTS) of small molecules that may affect proliferation, differentiation and/or maturation of the pancreatic insulin-producing  β cells and their immediate progenitors. We have established a relatively simple and inexpensive differentiation protocol that allows efficient generation of the pancreatic like, insulin-expressing cells from murine ESCs. Thus, this ESC to pancreatic lineage differentiation assay will be valuable to serve as a cellular tool for screening large number of molecules that could be used to treat diabetes.
 
 
 

H. Teresa Ku, Ph.D. Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H. Teresa Ku, Ph.D.
Professor
626-256-HOPE (4673), ext. 61174
 
Jeanne LeBon, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63796
 
Dan Gao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62251
 
Liang Jin, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 61449
 
Lena Wedeken, Ph.D.,
Postdoctoral Fellow and a CIRM Postdoctoral Scholar
626-256-HOPE (4673), ext. 33242
 
Stephanie Walker, B.S.
Research Associate I
626-256-HOPE (4673), ext. 31235
 
Nadiah Ghazalli, M.S.
Graduate Student and a CIRM Predoctoral Scholar
626-256-HOPE (4673), ext. 31235
 

Ku, Hsun Teresa, Ph.D. Research

Hsun Teresa Ku, Ph.D. Research

Identification and Characterization of Pancreatic Stem Cells
A functional pancreas consists of two types of tissue: exocrine and endocrine. The exocrine tissue mainly consists of acinar cells, which secrete bicarbonate and digestive enzymes. These secretions are collected by the pancreatic ductal system, which begins with centroacinar cells that are directly in contact with acinar cells. The prolongation of the terminal ducts, or alveoli, are lined by centroacinar cells and gradually merge into a main duct that drains into the duodenum. The endocrine tissue is organized as islets and contains cells that secrete glucagon, insulin, somatostatin, pancreatic polypeptide or grehlin. These endocrine hormones are released directly into the blood stream in response to metabolic signals.
 
Recently, there has been an intense interest in identifying pancreatic stem or progenitor cells, especially the endocrine progenitor cells, for the purpose of replacement therapy of Type 1 diabetes (T1D), a disease in which the insulin-secreting beta cells are specifically destroyed by autoimmunity. However, the existence of self-renewing multipotential stem cells in the pancreas remains elusive. Our laboratory is interested in the identification and characterization of pancreatic stem/progenitor cells, using both mouse models and cadaverous human pancreatic tissues for studies. We have established a quantitative and clonogenic progenitor cell assay in our laboratory, which will be a powerful tool to study the cellular and molecular mechanisms that govern the differentiation and proliferation of the pancreatic stem/progenitor cells at the single cell level.
 
Embryonic Stem Cell Therapy for Type 1 Diabetes
T1D is marked by a deficiency of the insulin-secreting β cells residing in the Islets of Langerhans within the pancreas due to autoimmune destruction. One of the long-term goals of our laboratory is to advance clinical cell-replacement therapy for patients with sever forms of T1D by developing a safe, reliable and abundant source of cells, derived from human stem cells that function like pancreatic islets. Toward this end, we have established an efficient and potentially cost-effective differentiation protocol, originally adapted from a mouse embryonic stem cell (ESC) differentiation method previously established in our laboratory, and generated a population of glucose-responsive, insulin-producing and secreting cells derived from human ESCs while in vitro. This cell population will be a suitable development candidate for clinical cell replacement therapy for T1D at City of Hope in the future.
 
Embryonic Stem Cells as a Cellular Tool for Screening of Molecules for Treatment of Diabetes
In the small molecule drug discovery field, the “bottom-up” approach, which is based on structural considerations of known targets, has not been as fruitful as was once promised. ESC technology ffers a potential solution to this bottleneck. ESCs can be grown in large numbers and maintained in a pluripotent state in vitro. They can also be induced in culture to differentiate into cells from all three germ layers in a relatively normal fashion that is faithful to development in vivo. Three properties make ES cells an ideal platform for drug discovery: first, ES cells can provide virtually inexhaustible quantities of target cells, which is necessary for screening of large numbers of compounds; second, ES cells can differentiate into mature cells with phenotypes that mimic their counterparts in vivo; and third, compared with immortalized cell lines, ES cells and their derivatives will provide a much more accurate platform for the “top-down” drug screening approach. Our laboratory is interested in high throughput screening (HTS) of small molecules that may affect proliferation, differentiation and/or maturation of the pancreatic insulin-producing  β cells and their immediate progenitors. We have established a relatively simple and inexpensive differentiation protocol that allows efficient generation of the pancreatic like, insulin-expressing cells from murine ESCs. Thus, this ESC to pancreatic lineage differentiation assay will be valuable to serve as a cellular tool for screening large number of molecules that could be used to treat diabetes.
 
 
 

Lab Members

H. Teresa Ku, Ph.D. Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H. Teresa Ku, Ph.D.
Professor
626-256-HOPE (4673), ext. 61174
 
Jeanne LeBon, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63796
 
Dan Gao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62251
 
Liang Jin, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 61449
 
Lena Wedeken, Ph.D.,
Postdoctoral Fellow and a CIRM Postdoctoral Scholar
626-256-HOPE (4673), ext. 33242
 
Stephanie Walker, B.S.
Research Associate I
626-256-HOPE (4673), ext. 31235
 
Nadiah Ghazalli, M.S.
Graduate Student and a CIRM Predoctoral Scholar
626-256-HOPE (4673), ext. 31235
 
Center for Biomedicine & Genetics
Our Center for Biomedicine & Genetics (CBG) manufactures promising new genetic and cellular agents created by researches for use inclinical trials. We are uniquely equipped to evaluate therapies swiftly and move lifesaving drugs into the marketplace with great speed.
City of Hope has been the home of many illustrious scientists, including six members of the prestigious National Academy of Sciences: Ernest Beutler, Alfred Knudson, Rachmiel Levine, Susumo Ohno, Eugene Roberts, and Arthur Riggs. Learn more about our current scientists and researchers.
Cytogenetics Office Location
City of Hope and Beckman Research Institute 1500 East Duarte Road Duarte, CA 91010-3000 Northwest Building
Room 2265

Phone: 626-256-HOPE (4673), ext. 62025
Fax: 626-301-8877

Biostatistics Office Location
City of Hope and Beckman Research Institute
1500 East Duarte Road
Duarte, CA  91010-3000

Information Sciences Building (#171)

Phone:  626-256-HOPE (4673), Ext. 61444
Fax:  626-471-7106
or 626-301-8802
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Patients undergoing treatment at City of Hope know they will be receiving the best medical care available, that their treatment will be delivered with compassion and that their care will extend to their families. “When we treat a patient here, we treat a family,” says Jo Ann S. Namm, child life manager and spec...
  • Did you know that colorectal cancer equally affects men and women? Or that it’s the third-leading cause of cancer death in the U.S.? Most important, did you know that colorectal cancer is very treatable and highly curable if detected early? If you didn’t know these facts, it’s time to learn. M...
  • To celebrate the beginning of Lunar New  Year 2015, City of Hope honored not just a new lunar calendar, but also the diversity of the community it serves. On Jan. 21, as tens of thousands of people celebrated Lunar New Year (and the arrival of the Year of the Ram) in the streets of L.A.’s Chinatown, City of [&#...
  • The breakthroughs that have revolutionized cancer treatment, transforming cancer in many cases to a very manageable and even curable disease, started out as just ideas. “I will often tell patients there’s no therapy we’re using to help them that wasn’t derived from somebody’s idea in some laboratory, working la...
  • The prostate cancer screening debate, at least as it relates to regular assessment of prostate specific antigen levels, is far from over. The U.S. Preventive Services Task Force recommended against routine PSA screening for prostate cancer in 2012, maintaining that the routine use of the PSA blood test does mor...
  • Cancer patients should get more than medical treatment. They should get comprehensive, evidence-based care that addresses their full range of needs. That kind of patient-focused care is City of Hope’s specialty. Under the guidance of Dawn Gross, M.D., Ph.D., the new Arthur M. Coppola Family Chair in Suppo...
  • Think twice before tossing out those hormone replacement pills. Although a new Lancet study suggests that hormone replacement therapy could increase a woman’s risk of ovarian cancer, a City of Hope expert urges women to keep this news in perspective. Hormone replacement therapy is prescribed to help allev...
  • Don’t know what to take, or send, that friend of yours in the hospital? Try a paper plate — filled not with cookies or sweets, but an image of yourself. Ilana Massi, currently undergoing treatment at City of Hope for acute myeloid leukemia, can vouch for the power of such a gift. She’s surrounded herself [̷...
  • With precision medicine now a national priority, City of Hope has joined a novel research partnership designed to further understanding of cancer at the molecular level, ultimately leading to more targeted cancer treatments. The Oncology Research Information Exchange Network, or ORIEN, is the world’s larg...
  • The spinal cord is an integral part of the human body, connecting the brain to everything else. So when a tumor grows on the spine, any messages that the brain tries to send to the rest of the body are interrupted, making everyday tasks — such as walking — more difficult. This year an estimated 22,850 […]
  • Each year, thousands of patients with hematologic malignancies undergo allogeneic stem cell transplantation (that is, they receive a donor’s stem cells), offering them a chance at cure. Graft-versus-host disease is a potentially deadly complication of this therapy and occurs in approximately 25 to 60 perc...
  • Bertram Yuh, M.D., assistant clinical professor in the Division of Urology and Urologic Oncology at City of Hope, offers his perspective on the benefits of surgery for aggressive prostate cancer. For men walking out of the doctor’s office after a diagnosis of cancer, the reality can hit like a ton of bricks. Th...
  • Although many Hispanic women face a high risk of mutations in the BRCA1 and BRCA2 genes – increasing their risk of breast and ovarian cancer – screenings for these mutations can be prohibitively expensive in Mexico and other Latin American countries. As a result, too many women don’t get the information t...
  • Providing lung cancer treatments to patients when their cancer is at its earliest and most treatable stages will now be a more attainable goal: Medicare has agreed to cover lung cancer screening for those beneficiaries who meet the requirements. The only proven way to detect lung cancer early enough to save liv...
  • At City of Hope, innovative scientific research, important clinical studies and vital construction projects are all powered by philanthropy. Generous supporters fuel a powerful and diverse range of progress in science and medicine, enabling researchers and clinicians to improve cancer treatments and create cure...