A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE

Ku, Hsun Teresa, Ph.D. Research

Hsun Teresa Ku, Ph.D. Research
Identification and Characterization of Pancreatic Stem Cells
A functional pancreas consists of two types of tissue: exocrine and endocrine. The exocrine tissue mainly consists of acinar cells, which secrete bicarbonate and digestive enzymes. These secretions are collected by the pancreatic ductal system, which begins with centroacinar cells that are directly in contact with acinar cells. The prolongation of the terminal ducts, or alveoli, are lined by centroacinar cells and gradually merge into a main duct that drains into the duodenum. The endocrine tissue is organized as islets and contains cells that secrete glucagon, insulin, somatostatin, pancreatic polypeptide or grehlin. These endocrine hormones are released directly into the blood stream in response to metabolic signals.
 
Recently, there has been an intense interest in identifying pancreatic stem or progenitor cells, especially the endocrine progenitor cells, for the purpose of replacement therapy of Type 1 diabetes (T1D), a disease in which the insulin-secreting beta cells are specifically destroyed by autoimmunity. However, the existence of self-renewing multipotential stem cells in the pancreas remains elusive. Our laboratory is interested in the identification and characterization of pancreatic stem/progenitor cells, using both mouse models and cadaverous human pancreatic tissues for studies. We have established a quantitative and clonogenic progenitor cell assay in our laboratory, which will be a powerful tool to study the cellular and molecular mechanisms that govern the differentiation and proliferation of the pancreatic stem/progenitor cells at the single cell level.
 
Embryonic Stem Cell Therapy for Type 1 Diabetes
T1D is marked by a deficiency of the insulin-secreting β cells residing in the Islets of Langerhans within the pancreas due to autoimmune destruction. One of the long-term goals of our laboratory is to advance clinical cell-replacement therapy for patients with sever forms of T1D by developing a safe, reliable and abundant source of cells, derived from human stem cells that function like pancreatic islets. Toward this end, we have established an efficient and potentially cost-effective differentiation protocol, originally adapted from a mouse embryonic stem cell (ESC) differentiation method previously established in our laboratory, and generated a population of glucose-responsive, insulin-producing and secreting cells derived from human ESCs while in vitro. This cell population will be a suitable development candidate for clinical cell replacement therapy for T1D at City of Hope in the future.
 
Embryonic Stem Cells as a Cellular Tool for Screening of Molecules for Treatment of Diabetes
In the small molecule drug discovery field, the “bottom-up” approach, which is based on structural considerations of known targets, has not been as fruitful as was once promised. ESC technology ffers a potential solution to this bottleneck. ESCs can be grown in large numbers and maintained in a pluripotent state in vitro. They can also be induced in culture to differentiate into cells from all three germ layers in a relatively normal fashion that is faithful to development in vivo. Three properties make ES cells an ideal platform for drug discovery: first, ES cells can provide virtually inexhaustible quantities of target cells, which is necessary for screening of large numbers of compounds; second, ES cells can differentiate into mature cells with phenotypes that mimic their counterparts in vivo; and third, compared with immortalized cell lines, ES cells and their derivatives will provide a much more accurate platform for the “top-down” drug screening approach. Our laboratory is interested in high throughput screening (HTS) of small molecules that may affect proliferation, differentiation and/or maturation of the pancreatic insulin-producing  β cells and their immediate progenitors. We have established a relatively simple and inexpensive differentiation protocol that allows efficient generation of the pancreatic like, insulin-expressing cells from murine ESCs. Thus, this ESC to pancreatic lineage differentiation assay will be valuable to serve as a cellular tool for screening large number of molecules that could be used to treat diabetes.
 
 
 

Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H. Teresa Ku, Ph.D.
Professor
626-256-HOPE (4673), ext. 61174
 
Jeanne LeBon, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63796
 
Dan Gao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62251
 
Liang Jin, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 61449
 
Lena Wedeken, Ph.D.,
Postdoctoral Fellow and a CIRM Postdoctoral Scholar
626-256-HOPE (4673), ext. 33242
 
Stephanie Walker, B.S.
Research Associate I
626-256-HOPE (4673), ext. 31235
 
Nadiah Ghazalli, M.S.
Graduate Student and a CIRM Predoctoral Scholar
626-256-HOPE (4673), ext. 31235
 
Center for Biomedicine & Genetics
Our Center for Biomedicine & Genetics (CBG) manufactures promising new genetic and cellular agents created by researches for use inclinical trials. We are uniquely equipped to evaluate therapies swiftly and move lifesaving drugs into the marketplace with great speed.
City of Hope has been the home of many illustrious scientists, including six members of the prestigious National Academy of Sciences: Ernest Beutler, Alfred Knudson, Rachmiel Levine, Susumo Ohno, Eugene Roberts, and Arthur Riggs. Learn more about our current scientists and researchers.
Cytogenetics Office Location
City of Hope and Beckman Research Institute 1500 East Duarte Road Duarte, CA 91010-3000 Northwest Building
Room 2265

Phone: 626-256-HOPE (4673), ext. 62025
Fax: 626-301-8877

Biostatistics Office Location
City of Hope and Beckman Research Institute
1500 East Duarte Road
Duarte, CA  91010-3000

Information Sciences Building (#171)

Phone:  626-256-HOPE (4673), Ext. 61444
Fax:  626-471-7106
or 626-301-8802
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
NEWS & UPDATES
  • Radiology is one of the cornerstones of any hospital. It is a key diagnostic branch of medicine essential for the initial diagnosis of many diseases and has an important role in monitoring a patient’s treatment and predicting outcome. Radiology is the specialty considered to be both the “eyes” and “ears” of med...
  • Donating blood and platelets saves lives. We all know this. Yet every summer, potential blood donors become distracted by vacations and schedule changes. As a result, blood donations fall dramatically across the nation, leaving hospitals frantically trying to bring in much-needed blood for their patients. Earli...
  • To be a great cancer hospital, you need a great oncology program. Just ask City of Hope – and Becker’s Hospital Review. The health care publishing industry stalwart, described as the “leading hospital magazine for hospital business news and analysis for hospital and health system executives,” recently selected ...
  • Diagnostic errors are far from uncommon. In fact, a recent study found that they affect about 12 million people, or 1 in 20 patients,  in the U.S. each year. With cancer, those errors in diagnosis can have a profound impact. A missed or delayed diagnosis can make the disease that much harder to treat, as the Ag...
  • Eleven years ago, lymphoma patient Christine Pechera began the long road toward a cancer-free life. She had been diagnosed with non-Hodgkin lymphoma and told by doctors elsewhere that her lifespan likely would be measured in months, not years. Refusing to give up, she came to City of Hope for a second opinion. ...
  • Brain surgery is not for the faint of heart. It takes courage, as well as curiosity and compassion. The truly great surgeons also have a desire to find new, and better ways, of healing the brain. Enter Behnam Badie, M.D., chief of neurosurgery at City of Hope. Now a pioneer in brain tumor treatment, Badie enter...
  • Elizabeth Budde, M.D., Ph.D., wants to encourage infighting. She aims to turn the immune system on itself — to the benefit of patients with acute myeloid leukemia, or AML. AML arises when abnormal white blood cells grow out of control, amassing in the bone marrow and interfering with normal blood cell developme...
  • Six, to date; more soon. Outpatient bone marrow transplants, that is. Finding new ways to deliver quality care with the greatest benefit is a priority for a patient-centered institution like City of Hope. For example, not every bone marrow transplant patient needs to check into the hospital for treatment. In fa...
  • The best measure of success in the fight against cancer is in lives saved and families intact, in extra days made special simply because they exist. Yuman Fong, M.D., chair of the Department of Surgery at City of Hope, understands what precedes that special awareness. When cancer strikes, one minute a person ma...
  • In cancer, expertise matters. So do survival rates, patient safety, patient services and many other factors. City of Hope understands this, as does U.S.News & World Report. The magazine’s 2014-2015 list of best hospitals for cancer once again includes City of Hope, ranking the institution 12 out of 900 elig...
  • At 29, Kommah McDowell was a successful young professional engaged to be married to her best friend. She worked in the financial services sector and kick-boxed to keep in shape and to relax. Then came the diagnosis of triple-negative inflammatory breast cancer, a rare and very aggressive form of breast cancer. ...
  • The well-known drug tamoxifen might not always be the best choice for premenopausal women who have undergone treatment for breast cancer and face a heightened risk of recurrence. A new study suggests that the aromatase inhibitor exemestane, or Aromasin, works slightly better than tamoxifen in preventing cancer ...
  • At age 44, Bridget Hanchette, a mother of three from La Crosse, Wisconsin, was diagnosed with grade IV glioblastoma, the most aggressive type of malignant brain tumor. The cancer grows and spreads quickly, making it difficult to treat. Most patients with this diagnosis are not given much hope, but Hanchette’s i...
  • Survival rates for childhood cancer have improved tremendously over the past few decades, but postcancer care hasn’t always kept up. More children than ever are now coping with long-term complications and side effects caused by their disease and treatment — one of those being learning difficulties. A new ...
  • When Sheldon Querido, a retired manufacturer’s representative, was diagnosed with bladder cancer, his doctor told him that he’d need to have his bladder removed – and that he’d have to wear an external urine-collection bag for the rest of his life. “My first response was ‘I donR...