A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Drug Discovery and Structural Biology (DDSB) Core Bookmark and Share

Drug Discovery and Structural Biology (DDSB) Core

A primary goal of City of Hope's Comprehensive Cancer Center and its research programs is to develop new, more effective and less toxic therapies for the treatment of cancer. The Drug Discovery and Structural Biology (DDSB) Core was established to provide the necessary technical and scientific resource to facilitate drug discovery efforts consistent with the cancer center’s translational research goals. An important focus of the DDSB is on cancer drug discovery in the area of molecular-targeted therapeutics, as well as chemical biology probes. The core was established with these goals in mind and therefore is highly diverse in its services, yet highly convergent in its efforts.  The core comprises four major service components: high throughput screening, biopolymer synthesis, small molecule synthesis and X-ray crystallography. These disciplines work together in a complementary and cohesive manner to provide a full array of early-phase drug discovery services and chemical probes for biological systems. 
 
For example, the high throughput screening component of the DDSB provides unique opportunities for discovering small-molecule inhibitors of targeted proteins. Next, lead compounds can be elaborated through medicinal chemistry and structure activity relationship studies.  Once a good lead compound is developed, X-ray crystallographic analysis of the drug-protein complex begins. This is an essential component of any drug development process, since a detailed structural analysis is critical to understanding the drug-protein interaction and facilitates the optimization of ligand binding by molecular design. The general capabilities of the DDSB are significant and include the design and synthesis of highly specialized biopolymers, including siRNA-aptamers, DNA-peptide hybrid derivatives and peptides >100 amino acids in length.  In addition, the core maintains expertise in synthetic organic chemistry and is capable of complex molecule synthesis as well as the synthesis of small-molecule agonists and antagonists, imaging agents, affinity ligands, nanoparticles and focused combinatorial libraries. These compounds are used for mechanistic studies in chemical biology, generation of lead compounds for drug discovery, drug optimization for preclinical evaluation and, ultimately, development of new-targeted cancer therapeutics. 
 
The DDSB is capable of synthesizing all structural classes from small to large organic molecules including air- and light-sensitive materials. The synthetic component of the DDSB works closely with the new Chemical GMP Synthesis Facilities in developing good manufacturing practice synthesis processes for investigational new drug submissions. The other significant aspect of the DDSB lies in the structural characterization of drug-protein complexes by X-ray crystallography and other biophysical techniques such as surface plasmon resonance, isothermal titration calorimetry, and analytical ultracentrifugation. This unique transdisciplinary core enables development of new molecularly-targeted compounds for chemical biology studies and cancer therapies to enhance our translational research mission of the City of Hope Comprehensive Cancer Center. The goal of developing targeted molecular cancer therapeutics within various research programs of the cancer center is greatly facilitated through the newly-expanded, integrated DDSB facility.
 
Any subcomponent of the DDSB can be utilized on a stand-alone basis for a specific application.  Please contact the co-directors or managers at the links below for more information on usage, pricing and availability.
 
David Horne, Ph.D.
Co-director
626-256-4673, ext. 67310
dhorne@coh.org
 
John C. Williams, Ph.D.
Co-director
626-256-HOPE (4673), ext. 60227
jwilliams@coh.org

Drug Discovery and Structural Biology (DDSB) Core

Drug Discovery and Structural Biology (DDSB) Core

A primary goal of City of Hope's Comprehensive Cancer Center and its research programs is to develop new, more effective and less toxic therapies for the treatment of cancer. The Drug Discovery and Structural Biology (DDSB) Core was established to provide the necessary technical and scientific resource to facilitate drug discovery efforts consistent with the cancer center’s translational research goals. An important focus of the DDSB is on cancer drug discovery in the area of molecular-targeted therapeutics, as well as chemical biology probes. The core was established with these goals in mind and therefore is highly diverse in its services, yet highly convergent in its efforts.  The core comprises four major service components: high throughput screening, biopolymer synthesis, small molecule synthesis and X-ray crystallography. These disciplines work together in a complementary and cohesive manner to provide a full array of early-phase drug discovery services and chemical probes for biological systems. 
 
For example, the high throughput screening component of the DDSB provides unique opportunities for discovering small-molecule inhibitors of targeted proteins. Next, lead compounds can be elaborated through medicinal chemistry and structure activity relationship studies.  Once a good lead compound is developed, X-ray crystallographic analysis of the drug-protein complex begins. This is an essential component of any drug development process, since a detailed structural analysis is critical to understanding the drug-protein interaction and facilitates the optimization of ligand binding by molecular design. The general capabilities of the DDSB are significant and include the design and synthesis of highly specialized biopolymers, including siRNA-aptamers, DNA-peptide hybrid derivatives and peptides >100 amino acids in length.  In addition, the core maintains expertise in synthetic organic chemistry and is capable of complex molecule synthesis as well as the synthesis of small-molecule agonists and antagonists, imaging agents, affinity ligands, nanoparticles and focused combinatorial libraries. These compounds are used for mechanistic studies in chemical biology, generation of lead compounds for drug discovery, drug optimization for preclinical evaluation and, ultimately, development of new-targeted cancer therapeutics. 
 
The DDSB is capable of synthesizing all structural classes from small to large organic molecules including air- and light-sensitive materials. The synthetic component of the DDSB works closely with the new Chemical GMP Synthesis Facilities in developing good manufacturing practice synthesis processes for investigational new drug submissions. The other significant aspect of the DDSB lies in the structural characterization of drug-protein complexes by X-ray crystallography and other biophysical techniques such as surface plasmon resonance, isothermal titration calorimetry, and analytical ultracentrifugation. This unique transdisciplinary core enables development of new molecularly-targeted compounds for chemical biology studies and cancer therapies to enhance our translational research mission of the City of Hope Comprehensive Cancer Center. The goal of developing targeted molecular cancer therapeutics within various research programs of the cancer center is greatly facilitated through the newly-expanded, integrated DDSB facility.
 
Any subcomponent of the DDSB can be utilized on a stand-alone basis for a specific application.  Please contact the co-directors or managers at the links below for more information on usage, pricing and availability.
 
David Horne, Ph.D.
Co-director
626-256-4673, ext. 67310
dhorne@coh.org
 
John C. Williams, Ph.D.
Co-director
626-256-HOPE (4673), ext. 60227
jwilliams@coh.org
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Recognized nationwide for its innovative biomedical research, City of Hope's Beckman Research Institute is home to some of the most tenacious and creative minds in science.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
Media Inquiries/Social Media

For media inquiries contact:

Dominique Grignetti
800-888-5323
dgrignetti@coh.org

 

For sponsorships inquiries please contact:

Stefanie Sprester
213-241-7160
ssprester@coh.org

Christine Nassr
213-241-7112
cnassr@coh.org

 
CONNECT WITH US
Facebook  Twitter  YouTube  Blog
 


NEWS & UPDATES
  • Preparing a Thanksgiving meal is a huge responsibility, not just in terms of taste and presentation, but also in terms of food safety. Special care must be taken when handling, assembling and cooking the feast  – and this is never more true than when your guests will include immunosuppressed patients, such as c...
  • Celebrating the holidays with family and friends can be festive, but most of us definitely overeat. The average Thanksgiving meal is close to 3,000 calories – well above the average daily recommendation of 2,000 calories. Here, we serve up some tips from City of Hope dietitians Dhvani Bhatt and Denise Ackerman ...
  • A healthier Thanksgiving doesn’t have to mean a big plate of raw carrots and kale – not that there’s anything wrong with that. Instead, it can amount to a small change here, a small change there, and maybe a tweak beyond that. Dietitians at City of Hope, which promotes a healthful lifestyle as a way...
  • Joselyn Miller received a lifesaving bone marrow transplant at City of Hope two years ago. Here, she reflects on her gratitude as a bone marrow recipient and on giving back. By Joselyn Miller thank•ful adjective  \ˈthaŋk-fəl\ :  conscious of benefit received :  glad that something has happened or not happened, ...
  • When it comes to cancer, your family history may provide more questions than answers: How do my genes increase my risk for cancer? No one in my family has had cancer; does that mean I won’t get cancer? What cancers are common in certain populations and ethnicities? City of Hope experts have some guidance. “Your...
  • The body’s immune system is usually adept at attacking outside invaders such as bacteria and viruses. But because cancer originates from the body’s own cells, the immune system can fail to see it as foreign. As a result, the body’s most powerful ally can remain largely idle against cancer as the disease progres...
  • On Jan. 1, 2015, five City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Her...
  • Are you thinking about switching from traditional cigarettes to e-cigarettes for the Great American Smokeout? Are you thinking that might be a better option than the traditional quit-smoking route? Think again. For lung expert Brian Tiep, M.D., the dislike and distrust he feels for e-cigs comes down to this: Th...
  • Hematologist Robert Chen, M.D., is boosting scientific discovery at City of Hope and, by extension, across the nation. Just ask the National Cancer Institute. The institution recently awarded Chen the much-sought-after Clinical Investigator Team Leadership Award for boosting scientific discovery at City of Hope...
  • Great strides have been made in treating cancer – including lung cancer – but by the time people show symptoms of the disease, the cancer has usually advanced. That’s because, at early stages, lung cancer has no symptoms. Only recently has lung cancer screening become an option. (Read more about the risks...
  • Identifying cures for currently incurable diseases and providing patients with safe, fast and potentially lifesaving treatments is the focus of City of Hope’s new Alpha Clinic for Cell Therapy and Innovation (ACT-I). The clinic is funded by an $8 million, five-year grant from the California Institute for Regene...
  • Cancer is a couple’s disease. It affects not just the person diagnosed, but his or her partner as well. It also affects the ability of both people to communicate effectively. The Couples Coping with Cancer Together program at City of Hope teaches couples how to communicate and solve problems as a unit. He...
  • Chemotherapy drugs work by either killing cancer cells or by stopping them from multiplying, that is, dividing. Some of the more powerful drugs used to treat cancer do their job by interfering with the cancer cells’ DNA and RNA growth, preventing them from copying themselves and dividing. Such drugs, however, l...
  • During October, everything seems to turn pink – clothing, the NFL logo, tape dispensers, boxing gloves, blenders, soup cans, you name it – in order to raise awareness for what many believe is the most dangerous cancer that affects women: breast cancer. But, in addition to thinking pink, women should...
  • In February 2003, when she was only 16 months old, Maya Gallardo was diagnosed with acute myelogenous leukemia (AML) and, to make matters much worse, pneumonia. The pneumonia complicated what was already destined to be grueling treatment regimen. To assess the extent of her illness, Maya had to endure a spinal ...