A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Overview of Diabetes Basic Research Bookmark and Share

An Overview of Diabetes Basic Research

City of Hope has one of the most influential diabetes research programs in the world.  Our scientists’ work has revolutionized the understanding and treatment of the disease and continues today with exciting developments in cell transplantation, gene regulation, immune tolerance, and gaining systemic understanding of diabetes as a complex, multifaceted disease.

Within Diabetes Research is the Department of Diabetes and Metabolic Diseases Research. Scientists in that department work in two divisions:
 
 
Landmark contributions

City of Hope’s leadership in diabetes began decades ago when the “father of endocrinology,” Rachmiel Levine, M.D., launched diabetes research at City of Hope. Levine had, in the 1940s, identified the principal cause of the illness: a reduction in our body’s ability to stimulate glucose entry in the cells, directly linked to the insulin production. 
City of Hope researchers, such as Rama Natarajan, Ph.D., are making landmark contributions to the fight against diabetes.
Today, City of Hope researchers continue to make landmark contributions to the fight against diabetes. Recognized nationwide for our innovative biomedical research, we are home to some of the most creative minds in science. Our strength lies in collaboration – leveraging the talents of investigators across departments and across the institution and rapidly translating scientific discoveries into new treatments. By working together and sharing results, researchers and clinicians are able to put theories into practice. As a result, excellence in one area fuels advancements in all areas.
 
City of Hope’s mission in diabetes research is to improve the quality of life for patients, prevent complications from the disease, and ultimately, establish a cure. At City of Hope, we’ve achieved many milestones in the field and are now pursuing the next generation of diabetes treatments in our efforts to end the devastation of the disease and usher in a new era of healing and hope.
 
Diabetes basic research is housed in the Leslie & Susan Gonda (Goldschmied) Diabetes & Genetic Research Center, which was recently expanded to provide urgently needed laboratory space. City of Hope researchers are using this lab space in their race to find ways to understand, control and cure diabetes, which continues to grow as a major public health threat.

An epidemic reaching pandemic proportions
 
Diabetes is rapidly progressing from epidemic to pandemic. The Centers for Disease Control and Prevention predicts that by the year 2050, if current epidemiological trends continue, one in every three people in the U.S. could suffer from diabetes at some point in their life. Diabetes is a global issue as well, as one of the world’s leading causes of death, disability and lost economic growth. Worldwide, health expenditures to treat and prevent the disease and its complications continue to grow, with $465 billion spent in 2011 alone.
 
To learn more about diabetes, go to the About Diabetes page.

Scientists in basic research provide the foundation for new therapies and approaches to battling diabetes. Our work touches on all aspects of the disease, including heart and kidney complications. Read more about our current projects and the work of each division by clicking on the tabs above.
 
Our clinical program and translational research
 
At City of Hope, our experience in the area of diabetes, including established analytic, molecular and clinical resources, have enabled us to rapidly translate emerging scientific concepts into new treatments. Our mission is to ensure that breakthroughs from the basic research of scientists in the Department of Diabetes and Metabolic Diseases Research are then rapidly translated into clinical settings where they can impact patients. The Department of Clinical Diabetes, Endocrinology & Metabolism is currently conducting a number of important clinical research programs to help put our basic and clinical biomedical research into practice.
 
To search for a trial, go to our clinical trials page.
               
 

Overview of Diabetes Basic Research

An Overview of Diabetes Basic Research

City of Hope has one of the most influential diabetes research programs in the world.  Our scientists’ work has revolutionized the understanding and treatment of the disease and continues today with exciting developments in cell transplantation, gene regulation, immune tolerance, and gaining systemic understanding of diabetes as a complex, multifaceted disease.

Within Diabetes Research is the Department of Diabetes and Metabolic Diseases Research. Scientists in that department work in two divisions:
 
 
Landmark contributions

City of Hope’s leadership in diabetes began decades ago when the “father of endocrinology,” Rachmiel Levine, M.D., launched diabetes research at City of Hope. Levine had, in the 1940s, identified the principal cause of the illness: a reduction in our body’s ability to stimulate glucose entry in the cells, directly linked to the insulin production. 
City of Hope researchers, such as Rama Natarajan, Ph.D., are making landmark contributions to the fight against diabetes.
Today, City of Hope researchers continue to make landmark contributions to the fight against diabetes. Recognized nationwide for our innovative biomedical research, we are home to some of the most creative minds in science. Our strength lies in collaboration – leveraging the talents of investigators across departments and across the institution and rapidly translating scientific discoveries into new treatments. By working together and sharing results, researchers and clinicians are able to put theories into practice. As a result, excellence in one area fuels advancements in all areas.
 
City of Hope’s mission in diabetes research is to improve the quality of life for patients, prevent complications from the disease, and ultimately, establish a cure. At City of Hope, we’ve achieved many milestones in the field and are now pursuing the next generation of diabetes treatments in our efforts to end the devastation of the disease and usher in a new era of healing and hope.
 
Diabetes basic research is housed in the Leslie & Susan Gonda (Goldschmied) Diabetes & Genetic Research Center, which was recently expanded to provide urgently needed laboratory space. City of Hope researchers are using this lab space in their race to find ways to understand, control and cure diabetes, which continues to grow as a major public health threat.

An epidemic reaching pandemic proportions
 
Diabetes is rapidly progressing from epidemic to pandemic. The Centers for Disease Control and Prevention predicts that by the year 2050, if current epidemiological trends continue, one in every three people in the U.S. could suffer from diabetes at some point in their life. Diabetes is a global issue as well, as one of the world’s leading causes of death, disability and lost economic growth. Worldwide, health expenditures to treat and prevent the disease and its complications continue to grow, with $465 billion spent in 2011 alone.
 
To learn more about diabetes, go to the About Diabetes page.

Scientists in basic research provide the foundation for new therapies and approaches to battling diabetes. Our work touches on all aspects of the disease, including heart and kidney complications. Read more about our current projects and the work of each division by clicking on the tabs above.
 
Our clinical program and translational research
 
At City of Hope, our experience in the area of diabetes, including established analytic, molecular and clinical resources, have enabled us to rapidly translate emerging scientific concepts into new treatments. Our mission is to ensure that breakthroughs from the basic research of scientists in the Department of Diabetes and Metabolic Diseases Research are then rapidly translated into clinical settings where they can impact patients. The Department of Clinical Diabetes, Endocrinology & Metabolism is currently conducting a number of important clinical research programs to help put our basic and clinical biomedical research into practice.
 
To search for a trial, go to our clinical trials page.
               
 
Overview
Beckman Research Institute of City of Hope is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.
 
 
Research Departments/Divisions

City of Hope is a leader in translational research - integrating basic science, clinical research and patient care.
 

Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

City of Hope’s Irell & Manella Graduate School of Biological Sciences equips students with the skills and strategies to transform the future of modern medicine.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
NEWS & UPDATES
  • All women are at some risk of developing the disease in their lifetimes, but breast cancer, like other cancers, has a disproportionate effect on minorities. Although white women have the highest incidence of breast cancer, African-American women have the highest breast cancer death rates of all racial and ethni...
  • First, the good news: HIV infections have dropped dramatically over the past 30 years. Doctors, researchers and health officials have made great strides in preventing and treating the disease, turning what was once a death sentence into, for some, a chronic condition. Now, the reality check: HIV is still a worl...
  • Screening for breast cancer has dramatically increased the number of cancers found before they cause symptoms – catching the disease when it is most treatable and curable. Mammograms, however, are not infallible. It’s important to conduct self-exams, and know the signs and symptoms that should be checked by a h...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free.   In his previ...
  • In a single day, former professional triathlete Lisa Birk learned she couldn’t have children and that she had breast cancer. “Where do you go from there?” she asks. For Birk, who swims three miles, runs 10 miles and cycles every day, the answer  ultimately was a decision to take control of her cancer care. Afte...
  • More and more people are surviving cancer, thanks to advanced cancer treatments and screening tools. Today there are nearly 14.5 million cancer survivors in the United States. But in up to 20 percent of cancer patients, the disease ultimately spreads to their brain. Each year, nearly 170,000 new cases of brain ...
  • Cancer cells are masters of survival. Despite excessive damage to their most basic workings and the constant vigilance of the body’s immune system, they manage to persevere. Much of this extraordinary ability to survive falls under the control of proteins bearing the name STAT, short for signal transducer and a...
  • One person receives the breast cancer diagnosis, but the cancer affects the entire family. Couples, in particular, can find the diagnosis and treatment challenging, especially if they have traditional male/female communication styles. “Though every individual is unique, men and women often respond differently d...
  • Here’s a statistic you’ll hear and read frequently over the next month: One in eight women born in the United States will develop breast cancer at some point in her lifetime. Although this statement is accurate, based on breast cancer incidence rates in 2013, it’s often misunderstood. Leslie Bernstein, Ph.D., d...
  • This time of year, how can anyone not think pink? Through the power of pastel packaging, October has been etched permanently into the American public’s consciousness as Breast Cancer Awareness Month. The color pink is now synonymous with breast cancer. Suffice to say, awareness has been raised. Now itR...
  •   Breast cancer facts: About one in eight women in the U.S. will develop invasive breast cancer during her lifetime. Breast cancer is the most common cancer in American women, behind skin cancer. An estimated 232,670 new cases of invasive breast cancer will be diagnosed in U.S. women this year. Two of thre...
  • Beyond the pink ribbons, special product fundraisers, and the pastel sea of color that marks October, Breast Cancer Awareness Month offers a reason to celebrate and to reflect. More than 2.8 million breast cancer survivors live in the U.S. They are survivors of the second most-common cancer in women, behind ski...
  • Gliomas, a type of tumor that grows in the brain, are very difficult to treat successfully due to their complex nature. That might not always be the case. First some background: The most aggressive and common type of primary brain tumor in adults is glioblastoma. Although the brain tumor mass can often be remov...
  • Cutaneous T cell lymphomas are types of non-Hodgkin lymphoma that arise when infection-fighting white blood cells in the lymphatic system – called lymphocytes – become malignant and affect the skin. The result is rashes and, sometimes, tumors, which can be mistaken for other dermatological conditions. In a smal...
  • Weighing your breast cancer risk? One study suggests a measure to consider is skirt size. A British study suggests that for each increase in skirt size every 10 years after age 25, the five-year risk of developing breast cancer postmenopause increases from one in 61 to one in 51 – a 77 percent increase in risk....