A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE

Analytical Cytometry

Analytical Cytometry Core (ACC)
City of Hope’s Analytical Cytometry Core (ACC) Facility provides researchers with high-quality flow cytometry instrumentation, as well as expertise in analyzing and/or sorting sample populations of interest via interpretation of their physical, fluorescent and/or light-scattering properties. The facilities and their services are available to both City of Hope and non-City of Hope researchers.
The ACC Facility has two components: the Flow Cytometry Facility (FCF) and the Molecular Imaging Facility (MIF).
As an added convenience, the ACC supports several off-line workstations throughout the campus where investigators can analyze their ACC-derived data. FCF software includes Flowjo (only on some workstations), Modfit (only on some workstations)and Summit. MIF software includes ImageQuant, PDQuest (Bio-Rad) or Odyssey.
Flow Cytometry Facility
The Flow Cytometry Facility has three Cell sorters (MoFlo, Aria III, and Aria SORP) and 5 analyzers (CyAn, Gallios, Fortessa, C6, and Guava). All the analyzers are available for unassisted end user runs.
Research reported in this publication included work performed in the Analytical Cytometry Core supported by the National Cancer Institute of the National Institutes of Health under award number P30CA33572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Typhoon™ 9410

The Typhoon™ 9410 equipment is available to scan phosphor screens, which have been exposed to radioactive sources on gels/blots/dishes/trays/glass slides.  The Analytical Cytometry Core has a large format (35x40 cm) phosphor screen and several small (20x25 cm) format screens available for proof of methodology.  Screen erasers are located at the core workstations or nearby.  This allows linear quantification of data (over five orders of magnitude) and produces digital images, which are directly manipulatable for analysis and publication.  Exposure times are usually 20-25% of those required on film.  Radioisotope sources have included P32, S35, C14, and I125. There are also special screens available from Amersham Biosciences for tritium detection.
The Typhoon™ 9410 also has the capability to detect fluorescent labels on gels, blots, dishes, trays, and glass slides. This instrument has four excitation sources: 457nm, 488nm, 532nm, and 633nm that allows for use of a wide range of fluorescent dyes.  There are also selectable emission filters (520BP40, 555BP20, 580BP30, 610BP30, 670BP30, 526SP, and 560LP), which allow for collection of specific and multiple signals.  This methodology allows for linear quantification of the data (over three to four decades of magnitude) and produces digital images, which are directly manipulatable for analysis and publication.  The matrix of interest can be scanned at various resolutions depending on experimental design.  For radioactivity, the range in resolution is from 25u to 1000u and for fluorescence, the range is from 10u-1000u.  At 10u the scanner is capable of handling microarray slides.
Quality Control
Users are generally responsible for running their own controls.
Cleaning solution and Kimwipes® are provided for cleaning the platen on the scanner.  All other reagents, solutions, buffers, and supplies must be provided by the user.  Several phosphor screens are provided by the core for radioisotope scans, but users are encouraged to buy their own screens.

Analytical Cytometry Equipment

We offer the following equipment in the Analytical Cytometry Core.
Flow Cytometry Facility (FCF):
  • MoFlo™ MLS
  • Aria III
  • Aria SORP
  • CyAn™ ADP 9 Color
  • Gallios
  • Fortessa
  • C6
  • Robo Sep Nagnetic Bead Separator

Odyssey® Infrared Imager

The Odyssey® Infrared Imager scanner can be used to analyze two-color western blots, two-color in-gel westerns, two-color northern blots, and any other primary antibody tagged samples, which can be stained with near-infrared secondary antibodies (IRDye 700 and IRDye 800) or Alexa Fluor 680.  It can also visualize Coomasie stained protein gels, which are fluorescent in the infrared.  Along with scanning gels and membranes, it can also scan microplate cell-based assays.  Various resolutions can be used for scanning, which range from 21u to 337u.
Quality Control
Users are generally responsible for running their own controls.
Cleaning solution and Kimwipes® are provided for cleaning the platen on the scanner.  All other reagents, solutions, buffers, and supplies must be provided by the user.


The MoFlo™ MLS has a three-laser optical bench configuration.  The three lasers (one argon gas and 2 krypton gas) provide fluorescent excitations from 351-752.5 nm.  This instrument has 10 separate photomultiplier tubes (PMTs) plus a forward scatter detector.  Peak height, integrated and logarithmic data can be collected from each of the PMTs.  There are optical filters for the collection of up to 9 simultaneous fluorescent signals.  The facility normally sorts with a 100 micron nozzle at 30 PSI.  Up to four sort decisions can be performed simultaneously.  Along with bulk sorting, cell deposition into wells as single cells or multiple cells is also a possibility.  The instrument can accommodate plates that contain from 6 to 384 wells.
MoFlo: 4-way sorting streams MoFlo: Cytomation sorting unit
MoFlo MLS (Multi-Laser System)  
Quality Control
UltraRainbow Fluorescent Particles are purchased from Sphereotech and run on a daily basis to monitor system performance.   These same beads are utilized to setup the sorting parameters of the system prior to cell sorting for a given day.
Supplies Needed
Investigators must supply their own reagents.  All samples are filtered by core staff prior to placement on the cell sorter.  We utilize 60micron nylon mesh that has been autoclaved for sterility.  It is recommended that the user provides collection tubes with the appropriate media for their specific cell type.  For plate sorting, the user must provide the appropriate plate type and collection media.  It is also recommended that the user bring extra collection media.


The CyAn™ ADP 9 Color has three excitation sources: 405nm, 488nm & 635nm. This instrument has 11 parameter capabilities (two scatter and nine fluorescent detectors).All parameters can be collected in linear peak height, linear area, and/or log scales.It is capable of acquisition rates up to 50,000 events per second.This cytometer is available for trained users to operate, or user samples may be analyzed by the core at an additional cost.
CyAn™ (Flow Cell) CyAn™ ADP
(Advanced Digital Processing)
Quality Control
Spherotech Ultra-Rainbow Spectralign beads are run once a week to ensure proper laser alignment for stability and reproducibility.
Investigators must supply their own reagents.  Users that are trained to self operate the instrument will need to provide their own tubes.  This instrument requires polypropylene or  polysytrene 12X75mm tubes for operation.

Using the Facility

Scheduling Appointments
Flow Cytometry Facility
To schedule appointments it is best email Lucy Brown (lbrown@coh.org).
Turn-around Time
Simple analysis schemes are accomplished as samples are run.If more detailed analysis is needed, it is usually done within a 24-hour period.

Abstract for Grants

The Analytical Cytometry Core (ACC) is comprised of two facilities: the Flow Cytometry Facility and the Molecular Imaging Facility. Both facilities are available for every investigator of the Beckman Research Institute of City of Hope.
The Flow Cytometry facility contains 3 cell sorters and 4 analytical cytometers.
The cell sorters include:
  • MoFlo legacy (Beckman Coulter) with 3lasers (405nm, 488nm & 640nm) and up to 9 parameters
  • Aria III (Becton Dickinson) with 4 lasers (405nm, 488nm, 561nm & 633nm) and up to 15 fluorescent parameters
  • Aria II SORP (Becton Dickinson) with 6 lasers (355nm, 405nm, 457nm, 488nm, 561nm & 640nm) and up to 18 simultaneous fluorescent parameters. This sorter is contained in a biosafety cabinet


The Analytical cytometers include:
  • Gallios (Beckman Coulter) with 10 fluorescent detectors and 3 lasers (488nm-5detectors, 405nm-2detectors, & 638nm-3detectors). It also has a 32 tube carousel for walk away data acquisition.
  • CyAn ADP (Beckman Coulter) with 9 fluorescent detectors and 3 lasers (488nm-5detectors, 405nm-2detectors, & 640nm-2detectors). We also have the ability to attach a Hypercyte for high throughput screening from 96/384 well platform.
  • Fortessa SORP (Becton Dickinson) with 5 lasers (355nm, 405nm, 488nm, 561nm, 640nm) and up to 17 simultaneous fluorescent parameters. HTS module for 96 well sample delivery allowing for automation is also available.
  • C6 (Becton Dickinson) with 4 fluorescent detectors and 2 lasers (488nm-3 detectors, 640nm-1 detector).


ACC also provides training for user operation of the analytical instruments, basic flow theory, software, and data analysis for result generation and presentation. Other functions of ACC include application assistance, experimental design, and site license management for Flowjo and FCSexpress.


Prices and availability vary. Please contact us for current information.
If you are a City of Hope employee, please visit this core's intranet site for pricing.

Contact Us

Jeremy Stark, Ph.D.
626-256-HOPE (4673), ext. 63346
Lucy Brown, M.S.
Staff Scientist
626-256-HOPE (4673), ext. 67172
Alexander Spalla, B.S.
Research Associate II
626-256-HOPE (4673), ext. 65832
Ni Feng
Research Associate II
626-256-HOPE (4673), ext. 65832
Lippman-Graff Building:
Room 101 - MoFlo Cell Sorter
Room 102 - Tissue Culture for Flow Cytometry Facility
Room 103 - Supply Room and Preparation Room for MIF
Room 114 - Molecular Imaging Facility Scanners
Room 221 - Managers Office
Room 233 - Staff Office
Room 227 - CyAn and Gallios Analyzer
Room 228A - Fortessa Analyzer
Room 228B - Robo Sep Megnetic Bead Separator
Room 229 - AriaIII, and Aria SORP Cell Sorter
Gonda Building:
Room 1006B - BD Fortessa Cytometer
Room 3113 - BD C6 Analyzer
Beckman Research Center:
Room 3300– BD C6 Analyzer
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.

Recognized nationwide for its innovative biomedical research, City of Hope's Beckman Research Institute is home to some of the most tenacious and creative minds in science.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
Media Inquiries/Social Media

For media inquiries contact:

Dominique Grignetti


For sponsorships inquiries please contact:

Stefanie Sprester

Christine Nassr

Facebook  Twitter  YouTube  Blog
  • Eleven years ago, lymphoma patient Christine Pechera began the long road toward a cancer-free life. She had been diagnosed with non-Hodgkin lymphoma and told by doctors elsewhere that her lifespan likely would be measured in months, not years. Refusing to give up, she came to City of Hope for a second opinion. ...
  • Brain surgery is not for the faint of heart. It takes courage, as well as curiosity and compassion. The truly great surgeons also have a desire to find new, and better ways, of healing the brain. Enter Behnam Badie, M.D., chief of neurosurgery at City of Hope. Now a pioneer in brain tumor treatment, Badie enter...
  • Elizabeth Budde, M.D., Ph.D., wants to encourage infighting. She aims to turn the immune system on itself — to the benefit of patients with acute myeloid leukemia, or AML. AML arises when abnormal white blood cells grow out of control, amassing in the bone marrow and interfering with normal blood cell developme...
  • Six, to date; more soon. Outpatient bone marrow transplants, that is. Finding new ways to deliver quality care with the greatest benefit is a priority for a patient-centered institution like City of Hope. For example, not every bone marrow transplant patient needs to check into the hospital for treatment. In fa...
  • The best measure of success in the fight against cancer is in lives saved and families intact, in extra days made special simply because they exist. Yuman Fong, M.D., chair of the Department of Surgery at City of Hope, understands what precedes that special awareness. When cancer strikes, one minute a person ma...
  • In cancer, expertise matters. So do survival rates, patient safety, patient services and many other factors. City of Hope understands this, as does U.S.News & World Report. The magazine’s 2014-2015 list of best hospitals for cancer once again includes City of Hope, ranking the institution 12 out of 900 elig...
  • At 29, Kommah McDowell was a successful young professional engaged to be married to her best friend. She worked in the financial services sector and kick-boxed to keep in shape and to relax. Then came the diagnosis of triple-negative inflammatory breast cancer, a rare and very aggressive form of breast cancer. ...
  • The well-known drug tamoxifen might not always be the best choice for premenopausal women who have undergone treatment for breast cancer and face a heightened risk of recurrence. A new study suggests that the aromatase inhibitor exemestane, or Aromasin, works slightly better than tamoxifen in preventing cancer ...
  • At age 44, Bridget Hanchette, a mother of three from La Crosse, Wisconsin, was diagnosed with grade IV glioblastoma, the most aggressive type of malignant brain tumor. The cancer grows and spreads quickly, making it difficult to treat. Most patients with this diagnosis are not given much hope, but Hanchette’s i...
  • Survival rates for childhood cancer have improved tremendously over the past few decades, but postcancer care hasn’t always kept up. More children than ever are now coping with long-term complications and side effects caused by their disease and treatment — one of those being learning difficulties. A new ...
  • When Sheldon Querido, a retired manufacturer’s representative, was diagnosed with bladder cancer, his doctor told him that he’d need to have his bladder removed – and that he’d have to wear an external urine-collection bag for the rest of his life. “My first response was ‘I donR...
  • To stop smoking, two approaches might be better than one. A new study has found that using the medication varenicline, or Chantix – along with nicotine patches – was more effective than the medicine alone in helping people quit. The study, conducted by Stellanbosch University in Cape Town, South Africa, and pub...
  • John Cloer was three months shy of his third birthday in 2004 when he was diagnosed with acute lymphoblastic leukemia. For the next three and a half years, he received chemotherapy at City of Hope, finally obtaining long-term remission. His parents Bill and Gina, along with John and his younger brother Steve, r...
  • News about the risks or benefits of widespread cancer screening seem to arrive daily – 3D mammography for breast cancer, CT scans for lung cancer, PSA tests for prostate cancer and now pelvic exams for some women’s cancers. Missing in the headlines is a reflection of how cancer detection is evolving. Today’s ca...
  • Adults with sickle cell disease soon may have a new treatment option: bone marrow transplants. Children with sickle cell disease have been treated successfully with transplantation of bone marrow, more officially known as hematopoietic stem cells, from other people. But the procedure has been less successful in...